• Title/Summary/Keyword: Face expression

Search Result 453, Processing Time 0.024 seconds

The clinical application of diagnosis by observing the face in "Yeongchu.Ohsaek" ("영추.오색(靈樞.五色)"에 수록된 안면망진법(顔面望診法)의 임상(臨床) 적용(適用))

  • Ahn, Kyu-Beom;Yoon, Chang-Yeol
    • Journal of Haehwa Medicine
    • /
    • v.18 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • There is an expression of the five colors(also called the Ohsaek) in Yeongchu. The Ohsaek explains that internal organs and joints are distributed on a face and you can see the major symptoms of internal organs and the whole body by observing complexion. However, the text is not easy to understand as it has many unfamiliar terms. Interpreting the text in terms of perception psychology, I intend to make it helpful in clinical applications.

  • PDF

Facial Expression Animation which Applies a Motion Data in the Vector based Caricature (벡터 기반 캐리커처에 모션 데이터를 적용한 얼굴 표정 애니메이션)

  • Kim, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.90-98
    • /
    • 2010
  • This paper describes methodology which enables user in order to generate facial expression animation of caricature which applies a facial motion data in the vector based caricature. This method which sees was embodied with the plug-in of illustrator. And It is equipping the user interface of separate way. The data which is used in experiment attaches 28 small-sized markers in important muscular part of the actor face and captured the multiple many expression which is various with Facial Tracker. The caricature was produced in the bezier curve form which has a respectively control point from location of the important marker which attaches in the face of the actor when motion capturing to connection with motion data and the region which is identical. The facial motion data compares in the caricature and the spatial scale went through a motion calibration process too because of size. And with the user letting the control did possibly at any time. In order connecting the caricature and the markers also, we did possibly with the click the corresponding region of the caricature, after the user selects each name of the face region from the menu. Finally, this paper used a user interface of illustrator and in order for the caricature facial expression animation generation which applies a facial motion data in the vector based caricature to be possible.

Auto Setup Method of Best Expression Transfer Path at the Space of Facial Expressions (얼굴 표정공간에서 최적의 표정전이경로 자동 설정 방법)

  • Kim, Sung-Ho
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents a facial animation and expression control method that enables the animator to select any facial frames from the facial expression space, whose expression transfer paths the system can setup automatically. Our system creates the facial expression space from approximately 2500 captured facial frames. To create the facial expression space, we get distance between pairs of feature points on the face and visualize the space of expressions in 2D space by using the Multidimensional scaling(MDS). To setup most suitable expression transfer paths, we classify the facial expression space into four field on the basis of any facial expression state. And the system determine the state of expression in the shortest distance from every field, then the system transfer from the state of any expression to the nearest state of expression among thats. To complete setup, our system continue transfer by find second, third, or fourth near state of expression until finish. If the animator selects any key frames from facial expression space, our system setup expression transfer paths automatically. We let animators use the system to create example animations or to control facial expression, and evaluate the system based on the results.

Facial Expression Recognition with Fuzzy C-Means Clusstering Algorithm and Neural Network Based on Gabor Wavelets

  • Youngsuk Shin;Chansup Chung;Lee, Yillbyung
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.126-132
    • /
    • 2000
  • This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.

  • PDF

Real-time Facial Modeling and Animation based on High Resolution Capture (고해상도 캡쳐 기반 실시간 얼굴 모델링과 표정 애니메이션)

  • Byun, Hae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1138-1145
    • /
    • 2008
  • Recently, performance-driven facial animation has been popular in various area. In television or game, it is important to guarantee real-time animation for various characters with different appearances between a performer and a character. In this paper, we present a new facial animation approach based on motion capture. For this purpose, we address three issues: facial expression capture, expression mapping and facial animation. Finally, we show the results of various examination for different types of face models.

  • PDF

Face Recognition Based on Facial Landmark Feature Descriptor in Unconstrained Environments (비제약적 환경에서 얼굴 주요위치 특징 서술자 기반의 얼굴인식)

  • Kim, Daeok;Hong, Jongkwang;Byun, Hyeran
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.666-673
    • /
    • 2014
  • This paper proposes a scalable face recognition method for unconstrained face databases, and shows a simple experimental result. Existing face recognition research usually has focused on improving the recognition rate in a constrained environment where illumination, face alignment, facial expression, and background is controlled. Therefore, it cannot be applied in unconstrained face databases. The proposed system is face feature extraction algorithm for unconstrained face recognition. First of all, we extract the area that represent the important features(landmarks) in the face, like the eyes, nose, and mouth. Each landmark is represented by a high-dimensional LBP(Local Binary Pattern) histogram feature vector. The multi-scale LBP histogram vector corresponding to a single landmark, becomes a low-dimensional face feature vector through the feature reduction process, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis). We use the Rank acquisition method and Precision at k(p@k) performance verification method for verifying the face recognition performance of the low-dimensional face feature by the proposed algorithm. To generate the experimental results of face recognition we used the FERET, LFW and PubFig83 database. The face recognition system using the proposed algorithm showed a better classification performance over the existing methods.

Facial Expression Analysis Framework (표정 분석 프레임워크)

  • Ji, Eun-Mi
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.3
    • /
    • pp.187-196
    • /
    • 2007
  • Human being represents his emotion through facial expression on purpose or unconsciously. Several psychologists started the research for analysis of facial expression, and over the last decade, many computer scientists were also interested in it. Facial expression recognition is a future-valuable research that can be applicable in many kinds of field based on man-computer interface. However, in spite of lots of study, it is hard to find any practical systems because of a variety of illumination and scale of face, and high dimensional information to be processed. In this paper, I tried to describe a generic framework for facial expression analysis, the need of each level, and international research tendency. Also, I analyzed the case study of facial expression in Korea. I expect it to be helpful for the scientists willing to make contribution on facial expression.

  • PDF

SNS planning through analysis of office workers SNS use (직장인의 SNS 사용 분석을 통한 SNS 기획)

  • Kim, Eun-Ju;Hong, Soon-Geun;Hwang, Chan-Gyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1359-1364
    • /
    • 2013
  • After platform changed from PC-based internet to mobile, SNS became new interactive media which relaces face-to-face interaction. the SNS users have already begun to recognize SNS as daily necessity. SNS market has been subdivided. In other words, SNS has entered into a period of vertical SNS that focus on contents and specific target. Therefore, It is necessary to analyze users for SNS planners. For this reason, analyzing why office workers who have the most powerful purchasing power use SNS is meaningful for SNS planners. Therefore, in this study, we analyzed the reasons for using SNS of office workers by studying relationship among office workers' stress, social support, self-expression and the use of SNS. As a result, the use of SNS has a significantly positive correlation with social support and self-expression. The self-expression in the SNS is not associated with stress, but rather it is the characteristics of the office workers. However the social support in the SNS affects to stress.

Detection of Facial Direction using Facial Features (얼굴 특징 정보를 이용한 얼굴 방향성 검출)

  • Park Ji-Sook;Dong Ji-Youn
    • Journal of Internet Computing and Services
    • /
    • v.4 no.6
    • /
    • pp.57-67
    • /
    • 2003
  • The recent rapid development of multimedia and optical technologies brings great attention to application systems to process facial Image features. The previous research efforts in facial image processing have been mainly focused on the recognition of human face and facial expression analysis, using front face images. Not much research has been carried out Into image-based detection of face direction. Moreover, the existing approaches to detect face direction, which normally use the sequential Images captured by a single camera, have limitations that the frontal image must be given first before any other images. In this paper, we propose a method to detect face direction by using facial features such as facial trapezoid which is defined by two eyes and the lower lip. Specifically, the proposed method forms a facial direction formula, which is defined with statistical data about the ratio of the right and left area in the facial trapezoid, to identify whether the face is directed toward the right or the left. The proposed method can be effectively used for automatic photo arrangement systems that will often need to set the different left or right margin of a photo according to the face direction of a person in the photo.

  • PDF

A Simple Way to Find Face Direction (간단한 얼굴 방향성 검출방법)

  • Park Ji-Sook;Ohm Seong-Yong;Jo Hyun-Hee;Chung Min-Gyo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.234-243
    • /
    • 2006
  • The recent rapid development of HCI and surveillance technologies has brought great interests in application systems to process faces. Much of research efforts in these systems has been primarily focused on such areas as face recognition, facial expression analysis and facial feature extraction. However, not many approaches have been reported toward face direction detection. This paper proposes a method to detect the direction of a face using a facial feature called facial triangle, which is formed by two eyebrows and the lower lip. Specifically, based on the single monocular view of the face, the proposed method introduces very simple formulas to estimate the horizontal or vertical rotation angle of the face. The horizontal rotation angle can be calculated by using a ratio between the areas of left and right facial triangles, while the vertical angle can be obtained from a ratio between the base and height of facial triangle. Experimental results showed that our method makes it possible to obtain the horizontal angle within an error tolerance of ${\pm}1.68^{\circ}$, and that it performs better as the magnitude of the vertical rotation angle increases.

  • PDF