• 제목/요약/키워드: Face color

검색결과 712건 처리시간 0.028초

Automatic Face Identification System Using Adaptive Face Region Detection and Facial Feature Vector Classification

  • Kim, Jung-Hoon;Do, Kyeong-Hoon;Lee, Eung-Joo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1252-1255
    • /
    • 2002
  • In this paper, face recognition algorithm, by using skin color information of HSI color coordinate collected from face images, elliptical mask, fratures of face including eyes, nose and mouth, and geometrical feature vectors of face and facial angles, is proposed. The proposed algorithm improved face region extraction efficacy by using HSI information relatively similar to human's visual system along with color tone information about skin colors of face, elliptical mask and intensity information. Moreover, it improved face recognition efficacy with using feature information of eyes, nose and mouth, and Θ1(ACRED), Θ2(AMRED) and Θ 3(ANRED), which are geometrical face angles of face. In the proposed algorithm, it enables exact face reading by using color tone information, elliptical mask, brightness information and structural characteristic angle together, not like using only brightness information in existing algorithm. Moreover, it uses structural related value of characteristics and certain vectors together for the recognition method.

  • PDF

컬러정보와 부분 템플릿을 이용한 얼굴영역, 요소 및 회전각 검출 (Detection Method of Human Face, Facial Components and Rotation Angle Using Color Value and Partial Template)

  • 이미애;박기수
    • 정보처리학회논문지B
    • /
    • 제10B권4호
    • /
    • pp.465-472
    • /
    • 2003
  • 얼굴영상을 효율적으로 처리하기 위해선 먼저 인력영상에서 얼굴영역과 얼굴을 구성하는 각 요소를 검출하고 얼굴의 회전각을 추정하는 전처리과정이 필요하다. 본 논문에서는 다양한 얼굴의 크기와 머리회전, 조명의 변화가 허용되고 피부색과 비슷한 배경이 얼굴에 병합되는 경우에도 얼굴과 요소들(눈, 입)을 강건하게 검출할 수 있는 방법을 제안한다. 변환된 HSV 컬러 좌표계상의 대역적 피부 색상정보와 히스토그램을 이용한 피부 색상정보로 얼굴후보영역을 지정한 뒤, 같은 방법으로 얼굴후보영역 안에서 입술영역을 검출한다. 입술영역의 횡축 기울기로 x축에 대한 회전각을 추정한 후, 얼굴의 모양정보와 요소의 위치정보를 이용해 얼굴임을 확정한다. 다음으로 양안의 조합으로 이루어진 부분 템플릿매칭을 통해 눈을 검출한 뒤, 얼굴의 넓이를 참조한 3차원 공간상에서의 눈의 위치를 계산하여 y축 회전각을 추정한다. 다양한 얼굴영상에 대해 실험을 실시한 결과, 본 알고리즘의 유효성을 확인하였다.

얼굴피부색, 얼굴특징벡터 및 안면각 정보를 이용한 실시간 자동얼굴검출 및 인식시스템 (Real-Time Automatic Human Face Detection and Recognition System Using Skin Colors of Face, Face Feature Vectors and Facial Angle Informations)

  • 김영일;이응주
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.491-500
    • /
    • 2002
  • 본 논문에서는 칼라 얼굴 영상으로부터 피부색 정보, 얼굴의 기하학적 특징벡터 및 안면각 정보를 이용한 실시간 얼굴검출 및 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 HSI 칼라좌표계상의 얼굴 피부색 정보와 얼굴 에지 정보를 함께 이용함으로써 얼굴 영역 검출 효율을 개선하였다. 또한 추출된 얼굴 영역으로부터 얼굴인식율 개선을 위해 얼굴 특징자들을 추출하고 추출된 얼굴 특징자들의 기하학적 관계로 구성된 얼굴 특징벡터와 얼굴 안면각 정보를 사용하여 얼굴 인식율을 개선하였다. 실험에서는 제안한 방법이 기존의 방법에 비해 얼굴 영역 검출율 뿐만 아니라 얼굴 인식율도 개선되었음을 알 수 있다.

컬러 SSD 알고리즘 기반 칼만 예측기를 이용한 다수의 얼굴 검출 및 추적 시스템 (Multiple Face Tracking System Using the Kalman Estimator Based on the Color SSD Algorithm)

  • 김병기;한영준;한헌수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.347-350
    • /
    • 2005
  • This paper proposes a new tracking algorithm using the Kalman estimator based color SSD algorithm. The Kalman estimator includes the color information as well as the position and size of the face region in its state vector, to take care of the variation of skin color while faces are moving. Based on the estimated face position, the color SSD algorithm finds the face matching with the one in the previous frame even when the color and size of the face region vary. The features of a face region extracted by the color SSD algorithm are used to update the state of the Kalman estimator.

  • PDF

복잡한 배경의 칼라영상에서 Face and Facial Features 검출 (Detection of Face and Facial Features in Complex Background from Color Images)

  • 김영구;노진우;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.69-72
    • /
    • 2002
  • Human face detection has many applications such as face recognition, face or facial feature tracking, pose estimation, and expression recognition. We present a new method for automatically segmentation and face detection in color images. Skin color alone is usually not sufficient to detect face, so we combine the color segmentation and shape analysis. The algorithm consists of two stages. First, skin color regions are segmented based on the chrominance component of the input image. Then regions with elliptical shape are selected as face hypotheses. They are certificated to searching for the facial features in their interior, Experimental results demonstrate successful detection over a wide variety of facial variations in scale, rotation, pose, lighting conditions.

  • PDF

한국도시여성의 얼굴색과 의복색과의 배색이미지에 관한 연구 (A Study on Coordination Image of Korean city woman's Face Color (5YR 7/3) and Clothes Colors)

  • 이정옥
    • 대한가정학회지
    • /
    • 제33권2호
    • /
    • pp.168-180
    • /
    • 1995
  • The purpose of present study was to examine how each clothes colors on the basis of 5YR 7/3 face color affect clothes colors images as follows : (1) what general consciousness of clothes colors in, (2) how the impression of the harmony of 5YR 7/3 face color and clothes colors is, (3) when we divide clothes colors according to the property of colors- chromatic color and achromatic color, cool color.neutral color.warm color, in tone, in color colume- if there is the difference of visual evaluation, (4) image analysis of 45 clothes colors with the view of each kind of adjectives. The result of this study is as the following: 1. As a result of the analysis of general consciousness on clothes colors, when subjects chose clothes, they most considered colors and they also considered their face colors. They would choose the color of clothes, which were becoming to their having clothes colors or their face colors when they bought clothes. 2. The impressions of coordination of 5YR 7/3 face color and clothes colors consisted of three dimensions - evaluation, activity and harmony. 3. It was known that as a result of the analysis of visual evalutional differences according to dividing the clothes colors by property of colors, there were such notable differences that they might effect the coordination images of face color and clothes colors differently. 4. After arranging 45 clothes colors on the graphs in 17 adjectives, gethering them thogether in each dimension and as the result of the analysis in the evaluation dimension, estimation of yellow, light green column were low and that of achromatic colors were high. That is, it was known that the evalution dimension was concerned with hue of the color properties. In activity dimension, there were different image according to each adjectives. That is, it was known that the evalution dimension was concerned with hue of the color properties. In activity dimension, there were different image according to each adjectives. That is, it was known that the activity demension was concerned with value and chroma of the color properties. In harmony dimension, achromatic columm was high and yellow, green yellow, vivid green columm were low in harmony. That is, it was known that the harmony demension was concerned with hue of the color properties.

  • PDF

퍼지추론을 이용한 얼굴영역 검출 알고리즘 (Face Region Detection Algorithm using Fuzzy Inference)

  • 정행섭;이주신
    • 한국항행학회논문지
    • /
    • 제13권5호
    • /
    • pp.773-780
    • /
    • 2009
  • 본 논문은 픽셀의 색상과 채도를 퍼지추론한 얼굴영역 검출 알고리즘을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로 구성되었다. 조명보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부 색상 모델에서 계산된 색상과 채도를 특징 파라미터로 멤버쉽 함수를 생성하여 유사도를 평가하였다. 추출된 얼굴 후보영역을 CMY칼라 모델에서 C요소로 눈을 검출하였고, YIQ 칼라 공간에서 Q요소로 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 정면 칼라 영상으로 실험한 결과, 얼굴 영상의 위치와 크기에 관계없이 얼굴 영역이 검출됨을 알 수 있었다.

  • PDF

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • 제9권3호
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

업데이트된 피부색을 이용한 얼굴 추적 시스템 (Face Tracking System Using Updated Skin Color)

  • 안경희;김종호
    • 한국멀티미디어학회논문지
    • /
    • 제18권5호
    • /
    • pp.610-619
    • /
    • 2015
  • *In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.

자연 영상에서 얼굴영역 검출 알고리즘 (Face region detection algorithm of natural-image)

  • 이주신
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.55-60
    • /
    • 2014
  • 본 논문에서는 자연 영상에서 피부색 색상과 채도를 기초로 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로 구성되었다. 조명 보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부색 표본 영상에서 색상과 채도를 특징벡터로 사용, 입력영상과의 유클리디안 거리를 구하여 피부색 영역을 추출하였다. 추출된 얼굴 후보영역을 CMY칼라 모델에서 C요소로 눈을 검출하였고, YIQ 칼라 공간에서 Q요소로 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 10장의 자연 영상으로 실험한 결과 100%의 얼굴 검출율을 보였다.