• Title/Summary/Keyword: Face bearing plate

Search Result 10, Processing Time 0.019 seconds

Structural Behavior of Reinforced Concrete column and Steel beam Joints (철근 콘크리트 기둥과 철골보의 합성구조 접합부 성능에 관한 연구)

  • 이원규;신동대;송진규;정혜교;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.575-578
    • /
    • 1999
  • The main objective of this study was to examine structural behavior of reinforced concrete column and steel beam joint. composite specimens about 3/4 of the actual beam column connection assembly were tested by applying cyclic load through actuators. Test variables include face bearing plate(FBP), extended face bearing plate(E-FBP), VIR, U-bar and sub beam. There is not much differenced between specimens with sub beam and without sub beam. Test results also show that the joint strength of test specimen is close to the predicted strength by ASCE guideline.

  • PDF

A Performance Test on Exterior T-type Joint for RCS Composite System (철근콘크리트 기둥 철골 보의 합성구조 외부형 접합부 구조성능에 관한 연구)

  • 양승렬;이상호;김병국;정하선;김종락;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.977-982
    • /
    • 2000
  • As a newly structural system, RCS composite system has been researched last two decades. However mechanism of exterior T-type joint for RCS composite system is not well known. This research is focus on the exterior T-type joint for RCS composite system. Specimens are designed by the ASCE guideline, tested and compared with the inner RCS joint. Test variables include face bearing plate(FBP), extended face bearing plate(E-FBP) and U-bar. The tests indicate that the strength of exterior T-type joint is higher than that of the guideline by ASCE. The U-bar has a significant effect on the joint strength and absorbing the strain energy.

Behavior and Failure Mode of Steel Coupling Beams Joint with FBP (FBP가 설치된 철골 커플링보 접합부의 거동 및 파괴모드)

  • Song Han-Beom;Yi Waon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1001-1009
    • /
    • 2005
  • The usefulness of walls in the structural planning of multistory buildings has long been recognized. When walls are situated in advantageous positions in a buildings, they can be very efficient in resisting lateral load. Specially coupled shear wall system is the primary lateral load resisting system of buildings. It is customary to refer to such walls as being 'coupled' by coupling beams. The coupling beams must exhibit excellent strength, stiffness ductility and energy dissipation capacity. To achieve these demands for steel coupling beam, steel coupling beam with Face Bearing Plate(FBP) embedded in the reinforced concrete walls is proposed. A comprehensive experimental test involving 2 steel coupling beam with and without FBP has been performed. Through experimental study, the evaluation of the advantage of that was establish and proposed the failure mode.

The Case Studies on Application of Mat Foundation System to Building Structure Founded on Weathered Ground (풍화대지반에 지지된 건축구조물의 전면기초 적용에 관한 사례 연구)

  • Choi, Yongkyu;Kim, Sungho;Lee, Minhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.5-18
    • /
    • 2009
  • In construction of buildings in Korea, the buildings are frequently founded on the weathered ground (weathered soil/rock, fractured rock). In this case, to make a full use of a bearing capacity of a weathered ground for economic design, the shallow mat foundation system could be used. In this study, we have researched three cases of mat foundations on the weathered ground in Korea, and analyzed and considered the design procedures and the reinforcing methods. That is, we have considered the detail design, analysis proceedings, the ground settlement evaluation proceedings, the rock face mapping evaluations after excavation and reinforcing methods of the mat foundation on the weathered ground. And large scale plate load tests on the weathered ground supporting the mat foundation were performed and also load bearing capacity and settlement of actual mat foundation, considering the scale effect, were evaluated.

  • PDF

A Study of the Mechanical Properties of Patch-Bonded and Riveted Repairs on Cracked Al 6061-T6 alloy Structures

  • Yoon, Young-Ki;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • A comparison of Riveted and bonded repairs, bearing and net tension failures, and Al 6061-T6 plates is presented. The results are then compared with previous papers about bonded repairs on different patch materials and shapes. Aluminum alloys, including Al 6061-T6, have a face-centered-cubic crystal structure. Under normal circumstances, these types of crystal structures do not exhibit cleavage fractures even at very low temperatures. In aluminum-base structures, the cracked plate structures are frequently repaired using mechanical fasteners-either rivets of bolts- even though patch-bonding techniques are applied to repair and reinforce the structure. Static test results indicate that the riveted repairs are affected by the position of the rivers. When using the same size of patch, the bonded repair technique is stronger; the rate of elongation is also increased. Form FEM analysis, it is revealed the origin of patch debonding in patch-bonded structures is the edge of the patch along to the tensile strength.

  • PDF

Fabrication of Metallic Sandwich Plates with Inner Dimpled Shell Structure and Static Bending Test (딤플형 내부구조 금속 샌드위치 판재의 제작 및 정적 굽힘 실험)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Lee Sang-Hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.653-661
    • /
    • 2006
  • Metallic sandwich plates with various inner cores have important new features with not only ultra-light material characteristics and load bearing function but also multifunctional characteristics. Because of production possibility on the large scale and a good geometric precision, sandwich plates with inner dimpled shell structure from a single material have advantages as compared with other solid sandwich plates. Inner dimpled shell structures can be fabricated with press or roll forming process, and then bonded with two face sheets by multi-point resistance welding or adhesive bonding. Elasto-plastic bending behavior of sandwich plates have been predicted analytically and measured. The measurements have shown that elastic perfectly plastic approximation can be conveniently employed with less than 10% error in elastic stiffness, collapse load, and energy absorption. The dominant collapse modes are face buckling and bonding failure after yielding. Sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.

An Ultrastructural Study on the Glochidium and Glochidial Encystment on the Host Fish (Glochidium larva 의 구조와 숙주어류에서의 피양형태에 관한 미세구조적 연구)

  • Jeong, Kye-Heon
    • The Korean Journal of Malacology
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 1989
  • A scanning electron microscopic study on the glochidium and glchidial encystment of Anodonta grandis on the guppy was conducted. The shape of the glochidium is apparently triangular and its averge size is 0.45mm X0.4mm when closed, The two glochidial shell valves are of the same size, kept together by a ligament of 120${\mu}{\textrm}{m}$ in length and 7 ${\mu}{\textrm}{m}$ in width. Each of the glochidial shell valves has a 16 ${\mu}{\textrm}{m}$ long hook sitdded with many spines on the superior face. A large area to the apex of the valve surrounding the base of the hook is provided with numerous small spines which become progressively smaller towards the periphery of the area, The external surface of the glochidial shell valve is covered with numerous small processes showing successive change in the shape and the pattern of destribution by part. Besides the processes, there are a number of niches scattered all over the exterior surface. The glochidial shell valve has two layers. One is the outer thin membrane bearing the processes and the niches and the others is the inner layer bearing numerous holes which any accessory structure and 2.65 ${\mu}{\textrm}{m}$ in diameter, emerges from a canal located at center of ventral plate of the mamtle, A total of three types of the hair cells are observed. In present artificial infection of the glochidium to the guppy, it took about three to four hours to complete an early cysts, During the period of encystment, The epithelial cells of the host fish actively migrated toward the attached glochidium and covered it.

  • PDF

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

An Experimental Study on Shear Strength of RCS System Beam-Column Jointswith Various Transverse Beam Sections (직교보 단면크기 변화에 따른 RCS구조 보-기둥 접합부의 전단내력에 관한 실험적 연구)

  • An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.197-204
    • /
    • 2006
  • Recently, in order to realization of construction and economical saving, various studies are progressing. Also, the study on RCS system which is consisted of reinforced concrete column and steel beam is progressing actively. Actually, however, resisting mechanism of panel zone is influenced by transverse beams when the stress transfers inner panel to outer panel but existing literature didn't reflect the effect of transverse beams. This paper is to analyze the test result of five inner beam-column joints specimen with a variable such as web, flange thickness of transverse beam and face bearing plate(FBP) for RCS systems were tested under cyclic loadings conforming to NEHRP recommendation to investigate the effect of transverse beams and the structural performance of beam-column joints. From the test result, it was shown that transverse beams are effective to enhance the shear strength and structural performance of beam-column joints.