• Title/Summary/Keyword: Face Pressure

Search Result 502, Processing Time 0.032 seconds

Study on the Seepage Forces Acting on the Tunnel Face with the Consideration of Tunnel Advance Rate (터널 굴진율을 고려한 막장에서의 침투력에 관한 연구)

  • 남석우;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.221-228
    • /
    • 2002
  • The stability of a tunnel face is one of the most important factors in tunnel excavation. Especially, if a tunnel is located under groundwater level, groundwater may flow into the tunnel face and seepage forces acting on the tunnel face due to groundwater flow may affect seriously the stability of the tunnel face. Therefore, the seepage pressure at the tunnel face should be considered fir the proper design and safe construction of a tunnel. In this paper, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was made. From this study, it was concluded that the tunnel advance rate must betaken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology fer the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for undetwater tunnels.

Effect of Auxiliary Address Pulse on Face-to-face Sustain Electrode Structure in AC-PDP

  • Kim, Bo-Sung;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.605-608
    • /
    • 2007
  • The discharge characteristics of the face-to-face sustain electrode structure employing auxiliary address pulse are investigated under a sustain driving frequency of 20 kHz and various auxiliary address pulse widths (500 ns, $1{\mu}s$, $2\;{\mu}s$) in the 6-in. test panel (42-in. Full HD grade) with a pressure of 450 Torr and a 4 % Xe-content. The luminance and the luminous efficiency at the auxiliary address pulse width of 500 ns are improved more than these of $1\;{\mu}s$ and $2\;{\mu}s$. At the auxiliary address pulse width of 500 ns, the luminous efficiency shows about 0.96 lm/W at the auxiliary pulse of 90 V and the sustain voltage of 260 V.

  • PDF

Evaluation of Face Stability of Tunnel with Steel Pipe-Reinforced Multi-step Grouting (강관다단 그라우팅으로 보강된 터널의 막장 안정성 평가)

  • 이인모;이재성;남석우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.273-280
    • /
    • 2003
  • Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multi-step grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multi-step grouting was evaluated by simultaneously considering two factors: one is the effective stress acting on the tunnel face calculated by limit theorem and limit equilibrium method; the other is the seepage force obtained by means of numerical analysis. The study revealed that the influence of the steel pipe-reinforced multi-step grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage force acting on the tunnel face.

  • PDF

The numerical study of seismic behavior of gravity retaining wall built near rock face

  • Taravati, Hossein;Ardakani, Alireza
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.179-186
    • /
    • 2018
  • We present the accurate investigation the seismic behavior of the gravity retaining wall built near rock face based on numerical method. The retaining wall is a useful structure in geotechnical engineering, where the earthquake is a common phenomenon; therefore, the evaluation of the behavior of the retaining wall during an earthquake is essential. However, in all previous studies, the backfill behind the wall was usually approximated by a homogeneous region, while in contrast, in practice, in many cases retaining walls are used to support the soil pressure in, inhomogeneous, mountainous area. This suggests an accurate investigation of the problem, i.e., numerical analysis. The numerical results will be compared with some of recently proposed analytical methods to show the accuracy of the proposed method. We show that increasing the volume of the rock face yields decreasing the permanent horizontal displacement of the gravity retaining wall built near rock face. Besides, we see that the permanent horizontal displacement of the gravity retaining wall with homogenous backfill is more than permanent horizontal displacement of the gravity retaining wall case of the built near rock face in different frequency contents.

A finite element based approach to observe hydrodynamic pressure in reservoir adjacent to concrete gravity dam

  • Santosh Kumar, Das;Kalyan Kumar, Mandal;Arup Guha, Niyogi
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.385-402
    • /
    • 2022
  • This paper deals with the study of hydrodynamic pressure in reservoir adjacent to the concrete gravity dam subjected to dynamic excitation. Widely famous finite element method is used to discretize the reservoir domain for modelling purpose. Pressure is considered as nodal variable following Eulerian approach. A suitable nonreflecting boundary condition is applied at truncated face of reservoir to make the infinite reservoir to finite one for saving the computational cost. Thorough studies have been done on generation of hydrodynamic pressure in reservoir with variation of different geometrical properties. Velocity profile and hydrodynamic pressure are observed due to harmonic excitation for variation of inclination angle of dam reservoir interface. Effect of bottom slope angle and inclined length of reservoir bottom on hydrodynamic pressure coefficient of reservoir are also observed. There is significant increase in hydrodynamic pressure and distinct changes in velocity profile of reservoir are noticeable for change in inclination angle of dam reservoir interface. Change of bottom slope and inclined length of reservoir bottom are also governing factor for variation of hydrodynamic pressure in reservoir subjected to dynamic excitation.

Study on the Mechanical Face Seal Performance for a 7-ton-Class Turbopump (7톤급 터보펌프 기계평면실의 성능 시험 연구)

  • Bae, Joonhwan;Kwak, Hyun D.;Choi, Changho
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.154-159
    • /
    • 2016
  • This paper presents an experimental study of the leakage performance and endurance performance of a mechanical face seal in the 7-ton-class turbopump of the Korea Space Launch Vehicle 2 third-stage engine. We install a mechanical face seal between the fuel pump and turbine to prevent the mixing of the fuel and turbine gas. We design and manufacture a prototype mechanical face seal, which has two parts, namely, a bellows seal assembly and mating ring. We set up a test facility to measure the leakage and endurance of the mechanical face seal. For the similarity tests, we use water under real operating conditions such as high rotational speed, high temperature, and high pressure. Through investigation of the leakage and carbon wear rate, it is possible to evaluate the performance of the mechanical face seal. The results of the leakage and endurance performance test demonstrate the absence of any leakage from the prototype mechanical face seal after a trial run and clarify that the acceptable wear rate fully satisfies the turbopump requirements. Finally, we install a qualified mechanical face seal in a 7-ton-class turbopump and perform a validation test in the turbopump real-propellant test facility in the Korea Aerospace Research Institute. The test results confirm that the mechanical face seal works well under real operating conditions.

A Study on the Closure Ratio for Tunnel Face Stabilization during Tunnel Excavation in Sand Soil (사질토지반에서 터널굴착시 막장안정을 위한 폐합비에 관한 연구)

  • Kim, Sang-Hwan;Kim, Ji-Tae;Lim, Chae-Ho;Lee, In-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.79-89
    • /
    • 2012
  • This paper presents experimental and numerical studies on the closure ratio of tunnel face to reduce pressure and displacement occurring at tunnel face during tunnel excavation. In experimental study, model tests are carried out according to the closure ratio of tunnel face and tunnel depth. Model test results are analyzed and interpreted by numerical calculation in order to verify results obtained from experimental and numerical studies. It is clearly found that tunnel face stability increases with the increase of the closure ratio of tunnel face. The results also show that tunnel face is stable when the closure ratio of tunnel face is larger than 80%. This research will be very useful to develop the economical tunnel face closing system.

Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations

  • Haghnejad, Ali;Ahangari, Kaveh;Moarefvand, Parviz;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.545-552
    • /
    • 2018
  • Blast-induced ground vibrations by a significant amount of explosives may cause many problems for mining slope stability. Geological discontinuities have a significant influence on the transmission of dynamic pressure of detonation and according to their position relative to the slope face may have damaging or useful impacts on the slope stability. In this study, the effect of geological discontinuities was investigated by modelling a slope with geological discontinuities through applying the dynamic pressure in three-dimensional discrete element code (3DEC). The geological discontinuities in four states that generally apperceived in mine slopes are considered. Given the advantages of the pressure decay function defined by some researcher, this type of function was used to develop the pressure-time profile. The peak particle velocities (PPV) values were monitored along an axis by utilization of Fish programming language and the results were used as an indicator to measure the effects. As shown in the discontinuity-free model, PPV empirical models are reliable in rocks lacking discontinuities or tightly jointed rock masses. According to the other results, the empirical models cannot be used for the case where the rock mass contains discontinuities with any direction or dip. With regard to PPVs, when the direction of discontinuities is opposite to that of the slope face, the dynamic pressure of detonation is significantly damped toward the slope direction at the surface of discontinuities. On the other hand, when the discontinuities are horizontal, the dynamic pressure of detonation affects the rock mass to a large distance.

The Effect of Distance between $90^{\circ}$Elbow close to Upstream Face of Orifice Plate and Orifice Plate on Discharge Coefficient (오리피스 전단에 인접한 $90^{\circ}$엘보와 오리피스간의 거리가 유출계수에 미치는 영향)

  • Yoon Joon-yong;Sung Nak-won
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.357-360
    • /
    • 2002
  • The effect of distance between ninety degree elbow close to upstream face of orifice plate and orifice plate on discharge coefficient was investigated. The distributions of discharge coefficient and differential pressure caused by elbow and short upstream straight length were examined and modified discharge coefficient was introduced. The results presented in this study could be useful when orifice plate is installed under the condition of simple flow disturbance element and short upstream straight length.

  • PDF

Sound Intensity Measurement for Characteristics of Two Microphone Arrangements. (두 개의 Microphone 배열 특성에 의한 음향 Intensity 측정)

  • 장호경
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1985.10a
    • /
    • pp.37-42
    • /
    • 1985
  • The errors caused by developmental finite difference approximations in the two microphone acoustic intensity measurement technique are considered in this paper. The frequencies and pressure responses obtained experimentally, are presented for both face to face (FF) and side by side(SS) microphone configurations. The implications of these results by the use of such a cofiguration for two microphone sound intensity measurement are discussed.

  • PDF