• Title/Summary/Keyword: Face Mask Recognition

Search Result 49, Processing Time 0.027 seconds

Recognition of Resident Registration Card using ART-1 based Self-Organizing Supervised Learning Algorithm And Face Recognition (ART-1 기반 자가 생성 지도 학습 알고리즘과 얼굴 인증을 이용한 주민등록증 인식)

  • Shin Tae-Sung;Park Choong-Shik;Moon Yong-Eun;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.313-318
    • /
    • 2006
  • 본 논문에서는 ART-1 기반 자가 생성 지도학습 알고리즘과 얼굴 인증을 이용한 주민등록증 인식방법을 제안한다. 본 논문에서는 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위해, 획득된 주민등록증의 영상에서 Sobel Mask와 Median Filter를 이용하여 윤곽선을 추출하고 잡음을 제거한 후, 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 각각 추출한다. 그리고 고주파 필터링을 적용하여 추출된 영역을 이진화하고 4방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드는 ART-1 기반 자가 생성 지도학습 알고리즘을 적용하여 인식한다. 얼굴 인증은 Template Matching 방법을 적용하여 Face Template Database를 구축하고, 획득된 주민등록증의 얼굴 영역과의 유사도를 측정하여 주민등록증의 사진 위조 여부를 판별한다. 제안된 주민등록증 인식 방법의 성능을 평가하기 위해 10개의 주민등록증을 대상으로 실험하였고 원본 주민등록증 영상에서 사진과 얼굴 부분을 위조한 주민등록증에 대해 얼굴 인증 실험을 하였다. 실험을 통해 제안된 방법이 주민등록번호 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Design of an Visitor Identification system for the Front Door of an Apartment using Deep learning (딥러닝 기반 이용한 공동주택현관문의 출입자 식별 시스템 설계)

  • Lee, Min-Hye;Mun, Hyung-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.45-51
    • /
    • 2022
  • Fear of contact exists due to the prevention of the spread of infectious diseases such as COVID-19. When using the common entrance door of an apartment, access is possible only if the resident enters a password or obtains the resident's permission. There is the inconvenience of having to manually enter the number and password for the common entrance door to enter. Also, contactless entry is required due to COVID-19. Due to the development of ICT, users can be easily identified through the development of face recognition and voice recognition technology. The proposed method detects a visitor's face through a CCTV or camera attached to the common entrance door, recognizes the face, and identifies it as a registered resident. Then, based on the registered information of the resident, it is possible to operate without contact by interworking with the elevator on the server. In particular, if face recognition fails with a hat or mask, the visitor is identified by voice or additional authentication of the visitor is performed based on the voice message. It is possible to block the spread of contagiousness without leaving any contactless function and fingerprint information when entering and exiting the front door of an apartment house, and without the inconvenience of access.

Implementation of Driver Fatigue Monitoring System (운전자 졸음 인식 시스템 구현)

  • Choi, Jin-Mo;Song, Hyok;Park, Sang-Hyun;Lee, Chul-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.711-720
    • /
    • 2012
  • In this paper, we introduce the implementation of driver fatigue monitering system and its result. Input video device is selected commercially available web-cam camera. Haar transform is used to face detection and adopted illumination normalization is used for arbitrary illumination conditions. Facial image through illumination normalization is extracted using Haar face features easily. Eye candidate area through illumination normalization can be reduced by anthropometric measurement and eye detection is performed by PCA and Circle Mask mixture model. This methods achieve robust eye detection on arbitrary illumination changing conditions. Drowsiness state is determined by the level on illumination normalize eye images by a simple calculation. Our system alarms and operates seatbelt on vibration through controller area network(CAN) when the driver's doze level is detected. Our algorithm is implemented with low computation complexity and high recognition rate. We achieve 97% of correct detection rate through in-car environment experiments.

Impact of face masks on spectral and cepstral measures of speech: A case study of two Korean voice actors (한국어 스펙트럼과 캡스트럼 측정시 안면마스크의 영향: 남녀 성우 2인 사례 연구)

  • Wonyoung Yang;Miji Kwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.422-435
    • /
    • 2024
  • This study intended to verify the effects of face masks on the Korean language in terms of acoustic, aerodynamic, and formant parameters. We chose all types of face masks available in Korea based on filter performance and folding type. Two professional voice actors (a male and a female) with more than 20 years of experience who are native Koreans and speak standard Korean participated in this study as speakers of voice data. Face masks attenuated the high-frequency range, resulting in decreased Vowel Space Area (VSA) and Vowel Articulation Index (VAI)scores and an increased Low-to-High spectral ratio (L/H ratio) in all voice samples. This can result in lower speech intelligibility. However, the degree of increment and decrement was based on the voice characteristics. For female speakers, the Speech Level (SL) and Cepstral Peak Prominence (CPP) increased with increasing face mask thickness. In this study, the presence or filter performance of a face mask was found to affect speech acoustic parameters according to the speech characteristics. Face masks provoked vocal effort when the vocal intensity was not sufficiently strong, or the environment had less reverberance. Further research needs to be conducted on the vocal efforts induced by face masks to overcome acoustic modifications when wearing masks.

Skew correction of face image using eye components extraction (눈 영역 추출에 의한 얼굴 기울기 교정)

  • Yoon, Ho-Sub;Wang, Min;Min, Byung-Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.71-83
    • /
    • 1996
  • This paper describes facial component detection and skew correction algorithm for face recognition. We use a priori knowledge and models about isolated regions to detect eye location from the face image captured in natural office environments. The relations between human face components are represented by several rules. We adopt an edge detection algorithm using sobel mask and 8-connected labelling algorith using array pointers. A labeled image has many isolated components. initially, the eye size rules are used. Eye size rules are not affected much by irregular input image conditions. Eye size rules size, and limited in the ratio between gorizontal and vertical sizes. By the eye size rule, 2 ~ 16 candidate eye components can be detected. Next, candidate eye parirs are verified by the information of location and shape, and one eye pair location is decided using face models about eye and eyebrow. Once we extract eye regions, we connect the center points of the two eyes and calculate the angle between them. Then we rotate the face to compensate for the angle so that the two eyes on a horizontal line. We tested 120 input images form 40 people, and achieved 91.7% success rate using eye size rules and face model. The main reasons of the 8.3% failure are due to components adjacent to eyes such as eyebrows. To detect facial components from the failed images, we are developing a mouth region processing module.

  • PDF

Mask Wearing Detection System using Deep Learning (딥러닝을 이용한 마스크 착용 여부 검사 시스템)

  • Nam, Chung-hyeon;Nam, Eun-jeong;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Recently, due to COVID-19, studies have been popularly worked to apply neural network to mask wearing automatic detection system. For applying neural networks, the 1-stage detection or 2-stage detection methods are used, and if data are not sufficiently collected, the pretrained neural network models are studied by applying fine-tuning techniques. In this paper, the system is consisted of 2-stage detection method that contain MTCNN model for face recognition and ResNet model for mask detection. The mask detector was experimented by applying five ResNet models to improve accuracy and fps in various environments. Training data used 17,217 images that collected using web crawler, and for inference, we used 1,913 images and two one-minute videos respectively. The experiment showed a high accuracy of 96.39% for images and 92.98% for video, and the speed of inference for video was 10.78fps.

Mask Cognition Types of Korean in the COVID19 Era using the Q Methodology

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.157-167
    • /
    • 2022
  • This study attempted to investigate what kind of perception people in their 20s have about masks and to find out the characteristics of each type by categorizing the perception. The Q methodology was used for the study. The cognition types of masks were categorized into three. Type 1 was a 'always wear impact-important type' that always wears masks and thinks masks affect non-verbal communication and the wearer's image. Type 2 was a 'function-important negative recognition type' that wears masks to prevent germs and thinks that masks have a great negative impact. Type 3 was a 'concealment wear positive image type' that wears a mask to cover the face and thinks that a person looks young when wearing a mask. It is thought that the development of masks of various designs and functions reflecting the needs of consumers should be carried out. Also, it is thought that various products should be developed and sold so that consumers can choose according to important considerations such as design, fit, and function.

A Study on Local Micro Pattern for Facial Expression Recognition (얼굴 표정 인식을 위한 지역 미세 패턴 기술에 관한 연구)

  • Jung, Woong Kyung;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.5
    • /
    • pp.17-24
    • /
    • 2014
  • This study proposed LDP (Local Directional Pattern) as a new local micro pattern for facial expression recognition to solve noise sensitive problem of LBP (Local Binary Pattern). The proposed method extracts 8-directional components using $m{\times}m$ mask to solve LBP's problem and choose biggest k components, each chosen component marked with 1 as a bit, otherwise 0. Finally, generates a pattern code with bit sequence as 8-directional components. The result shows better performance of rotation and noise adaptation. Also, a new local facial feature can be developed to present both PFF (permanent Facial Feature) and TFF (Transient Facial Feature) based on the proposed method.

Recognition of Resident Registration Cards Using ART-1 and PCA Algorithm (ART-1과 PCA 알고리즘을 이용한 주민등록증 인식)

  • Park, Sung-Dae;Woo, Young-Woon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1786-1792
    • /
    • 2007
  • In this paper, we proposed a recognition system for resident registration cards using ART-1 and PCA algorithm. To extract registration numbers and issue date, Sobel mask and median filter are applied first and noise removal follows. From the noise-removed image, horizontal smearing is used to extract the regions, which are binarized with recursive binarization algorithm. After that vortical smearing is applied to restore corrupted lesions, which are mainly due to the horizontal smearing. from the restored image, areas of individual codes are extracted using 4-directional edge following algorithm and face area is extracted by the morphologic characteristics of a registration card. Extracted codes are recognized using ART-1 algorithm and PCA algorithm is used to verify the face. When the proposed method was applied to 25 real registration card images, 323 characters from 325 registration numbers and 166 characters from 167 issue date numbers, were correctly recognized. The verification test with 25 forged images showed that the proposed verification algorithm is robust to detect forgery.

A Study on Eyelid and Eyelash Localization for Iris Recognition (홍채 인식에서의 눈꺼풀 및 눈썹 추출 연구)

  • Kang, Byung-Joon;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.7
    • /
    • pp.898-905
    • /
    • 2005
  • Iris recognition Is that identifies a user based on the unique iris muscle patterns which has the functionalities of dilating or contracting pupil region. Because it is reported that iris recognition is more accurate than other biometries such as face, fingerprint, vein and speaker recognition, iris recognition is widely used in the high security application domain. However, if unnecessary information such as eyelid and eyelash is included in iris region, the error for iris recognition is increased, consequently. In detail, if iris region is used to generate iris code including eyelash and eyelid, the iris codes are also changed and the error rate is increased. To overcome such problem, we propose the method of detecting eyelid by using pyramid searching parabolic deformable template. In addition, we detect the eyelash by using the eyelash mask. Experimental results show that EER(Equal Error Rate) for iris recognition using the proposed algorithm is lessened as much as $0.3\%$ compared to that not using it.

  • PDF