• Title/Summary/Keyword: Face Mask Detection

Search Result 46, Processing Time 0.03 seconds

Face Detection Algorithm for Automatic Teller Machine(ATM) (현금 인출기 적용을 위한 얼굴인식 알고리즘)

  • 이혁범;유지상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1041-1049
    • /
    • 2000
  • A face recognition algorithm for the user identification procedure of automatic teller machine(ATM), as an application of the still image processing techniques is proposed in this paper. In the proposed algorithm, face recognition techniques, especially, face region detection, eye and mouth detection schemes, which can distinguish abnormal faces from normal faces, are proposed. We define normal face, which is acceptable, as a face without sunglasses or a mask, and abnormal face, which is non-acceptable, as that wearing both, or either one of them. The proposed face recognition algorithm is composed of three stages: the face region detection stage, the preprocessing stage for facial feature detection and the eye and mouth detection stage. Experimental results show that the proposed algorithm can distinguish abnormal faces from normal faces accurately from restrictive sample images.

  • PDF

Adaptive Face Mask Detection System based on Scene Complexity Analysis

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) has affected the world seriously. Every person is required for wearing a mask properly in a public area to prevent spreading the virus. However, many people are not wearing a mask properly. In this paper, we propose an efficient mask detection system. In our proposed system, we first detect the faces of input images using YOLOv5 and classify them as the one of three scene complexity classes (Simple, Moderate, and Complex) based on the number of detected faces. After that, the image is fed into the Faster-RCNN with the one of three ResNet (ResNet-18, 50, and 101) as backbone network depending on the scene complexity for detecting the face area and identifying whether the person is wearing the mask properly or not. We evaluated our proposed system using public mask detection datasets. The results show that our proposed system outperforms other models.

A System for Recognizing Sunglasses and a Mask of an ATM User (현금 인출기 사용자의 선글라스 및 마스크 인식 시스템)

  • Lim, Dong-Ak;Ko, Jae-Pil
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.1
    • /
    • pp.34-43
    • /
    • 2008
  • This paper presents a system for recognizing sunglasses and a mask of an ATM (Automatic Teller Machine) user. The proposed system extracts firstly facial contour, then from this extraction results it estimates the regions of eyes and mouth. Finally, it recognizes sunglasses and a mouth using Histogram Indexing based on those regions. We adopt a face shape model to be able to extract facial contour and to estimate the regions of eyes and mouth when those regions are occluded by sunglasses and a mask. To improve the fitting accuracy of the shame model, we adopt 2-step face detection method and conduct fitting several times by varying the initial position of the model instance. To achieve a good performance of the face detection method based on a background model, we enable the system to automatically update the background model. In experiment, we present some experiments on setting parameters of the system with images taken from in our laboratory, and demonstrate the results of recognizing sunglasses and a mask.

  • PDF

Deep learning based face mask recognition for access control (출입 통제에 활용 가능한 딥러닝 기반 마스크 착용 판별)

  • Lee, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.395-400
    • /
    • 2020
  • Coronavirus disease 2019 (COVID-19) was identified in December 2019 in China and has spread globally, resulting in an ongoing pandemic. Because COVID-19 is spread mainly from person to person, every person is required to wear a facemask in public. On the other hand, many people are still not wearing facemasks despite official advice. This paper proposes a method to predict whether a human subject is wearing a facemask or not. In the proposed method, two eye regions are detected, and the mask region (i.e., face regions below two eyes) is predicted and extracted based on the two eye locations. For more accurate extraction of the mask region, the facial region was aligned by rotating it such that the line connecting the two eye centers was horizontal. The mask region extracted from the aligned face was fed into a convolutional neural network (CNN), producing the classification result (with or without a mask). The experimental result on 186 test images showed that the proposed method achieves a very high accuracy of 98.4%.

Generation of Masked Face Image Using Deep Convolutional Autoencoder (컨볼루션 오토인코더를 이용한 마스크 착용 얼굴 이미지 생성)

  • Lee, Seung Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1136-1141
    • /
    • 2022
  • Researches of face recognition on masked faces have been increasingly important due to the COVID-19 pandemic. To realize a stable and practical recognition performance, large amount of facial image data should be acquired for the purpose of training. However, it is difficult for the researchers to obtain masked face images for each human subject. This paper proposes a novel method to synthesize a face image and a virtual mask pattern. In this method, a pair of masked face image and unmasked face image, that are from a single human subject, is fed into a convolutional autoencoder as training data. This allows learning the geometric relationship between face and mask. In the inference step, for a unseen face image, the learned convolutional autoencoder generates a synthetic face image with a mask pattern. The proposed method is able to rapidly generate realistic masked face images. Also, it could be practical when compared to methods which rely on facial feature point detection.

Real Time Face Detection Using Integer DCT and SVM (Integer DCT와 SVM을 이용한 실시간 얼굴 검출)

  • 박현선;김경수;김희정;정병희;하명환;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2112-2115
    • /
    • 2003
  • The system for the real time face detection is described in this paper. For face verification, support vector machine (SVM) was utilized. Although SVM performs quit well, SVM has a drawback that the computational cost is high because all pixels in a mask are used as an input feature vector of SVM. To resolve this drawback, a method to reduce the dimension of feature vectors using the integer DCT was proposed. Also for the real time face detection applications, low-complexity methods for face candidate detection in a gray image were used. As a result, the accurate face detection was performed in real time.

  • PDF

Albedo Based Fake Face Detection (빛의 반사량 측정을 통한 가면 착용 위변조 얼굴 검출)

  • Kim, Young-Shin;Na, Jae-Keun;Yoon, Sung-Beak;Yi, June-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.139-146
    • /
    • 2008
  • Masked fake face detection using ordinary visible images is a formidable task when the mask is accurately made with special makeup. Considering recent advances in special makeup technology, a reliable solution to detect masked fake faces is essential to the development of a complete face recognition system. This research proposes a method for masked fake face detection that exploits reflectance disparity due to object material and its surface color. First, we have shown that measuring of albedo can be simplified to radiance measurement when a practical face recognition system is deployed under the user-cooperative environment. This enables us to obtain albedo just by grey values in the image captured. Second, we have found that 850nm infrared light is effective to discriminate between facial skin and mask material using reflectance disparity. On the other hand, 650nm visible light is known to be suitable for distinguishing different facial skin colors between ethnic groups. We use a 2D vector consisting of radiance measurements under 850nm and 659nm illumination as a feature vector. Facial skin and mask material show linearly separable distributions in the feature space. By employing FIB, we have achieved 97.8% accuracy in fake face detection. Our method is applicable to faces of different skin colors, and can be easily implemented into commercial face recognition systems.

Face Detection Using Multi-level Features for Privacy Protection in Large-scale Surveillance Video (대규모 비디오 감시 환경에서 프라이버시 보호를 위한 다중 레벨 특징 기반 얼굴검출 방법에 관한 연구)

  • Lee, Seung Ho;Moon, Jung Ik;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1268-1280
    • /
    • 2015
  • In video surveillance system, the exposure of a person's face is a serious threat to personal privacy. To protect the personal privacy in large amount of videos, an automatic face detection method is required to locate and mask the person's face. However, in real-world surveillance videos, the effectiveness of existing face detection methods could deteriorate due to large variations in facial appearance (e.g., facial pose, illumination etc.) or degraded face (e.g., occluded face, low-resolution face etc.). This paper proposes a new face detection method based on multi-level facial features. In a video frame, different kinds of spatial features are independently extracted, and analyzed, which could complement each other in the aforementioned challenges. Temporal domain analysis is also exploited to consolidate the proposed method. Experimental results show that, compared to competing methods, the proposed method is able to achieve very high recall rates while maintaining acceptable precision rates.

Robust Head Pose Estimation for Masked Face Image via Data Augmentation (데이터 증강을 통한 마스크 착용 얼굴 이미지에 강인한 얼굴 자세추정)

  • Kyeongtak, Han;Sungeun, Hong
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.944-947
    • /
    • 2022
  • Due to the coronavirus pandemic, the wearing of a mask has been increasing worldwide; thus, the importance of image analysis on masked face images has become essential. Although head pose estimation can be applied to various face-related applications including driver attention, face frontalization, and gaze detection, few studies have been conducted to address the performance degradation caused by masked faces. This study proposes a new data augmentation that synthesizes the masked face, depending on the face image size and poses, which shows robust performance on BIWI benchmark dataset regardless of mask-wearing. Since the proposed scheme is not limited to the specific model, it can be utilized in various head pose estimation models.

Facial Recognition Algorithm Based on Edge Detection and Discrete Wavelet Transform

  • Chang, Min-Hyuk;Oh, Mi-Suk;Lim, Chun-Hwan;Ahmad, Muhammad-Bilal;Park, Jong-An
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.283-288
    • /
    • 2001
  • In this paper, we proposed a method for extracting facial characteristics of human being in an image. Given a pair of gray level sample images taken with and without human being, the face of human being is segmented from the image. Noise in the input images is removed with the help of Gaussian filters. Edge maps are found of the two input images. The binary edge differential image is obtained from the difference of the two input edge maps. A mask for face detection is made from the process of erosion followed by dilation on the resulting binary edge differential image. This mask is used to extract the human being from the two input image sequences. Features of face are extracted from the segmented image. An effective recognition system using the discrete wave let transform (DWT) is used for recognition. For extracting the facial features, such as eyebrows, eyes, nose and mouth, edge detector is applied on the segmented face image. The area of eye and the center of face are found from horizontal and vertical components of the edge map of the segmented image. other facial features are obtained from edge information of the image. The characteristic vectors are extrated from DWT of the segmented face image. These characteristic vectors are normalized between +1 and -1, and are used as input vectors for the neural network. Simulation results show recognition rate of 100% on the learned system, and about 92% on the test images.

  • PDF