KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4080-4097
/
2020
In recent years, convolutional neural network (CNN) has become the primary method for face detection. But its shortcomings are obvious, such as expensive calculation, heavy model, etc. This makes CNN difficult to use on the mobile devices which have limited computing and storage capabilities. Therefore, the design of lightweight CNN for face detection is becoming more and more important with the popularity of smartphones and mobile Internet. Based on the CPU real-time face detector FaceBoxes, we propose a multi-task lightweight face detector, which has low computing cost and higher detection precision. First, to improve the detection capability, the squeeze and excitation modules are used to extract attention between channels. Then, the textual and semantic information are extracted by shallow networks and deep networks respectively to get rich features. Finally, the landmark detection module is used to improve the detection performance for small faces and provide landmark data for face alignment. Experiments on AFW, FDDB, PASCAL, and WIDER FACE datasets show that our algorithm has achieved significant improvement in the mean average precision. Especially, on the WIDER FACE hard validation set, our algorithm outperforms the mean average precision of FaceBoxes by 7.2%. For VGA-resolution images, the running speed of our algorithm can reach 23FPS on a CPU device.
Facial alignment is very important task for human life. And facial landmark detection is one of the instrumental methods in face alignment. We introduce the stacked hourglass networks with transposed convolutional layers for facial landmark detection. our method substitutes nearest neighbor upsampling for transposed convolutional layer. Our method returns better accuracy in facial landmark detection compared to stacked hourglass networks with nearest neighbor upsampling.
최근 딥러닝 기술의 발전과 함께 얼굴 특징점 검출 방법의 성능은 크게 향상되었다. 대표적인 얼굴 특징점 검출 방법인 히트맵 회귀 방법은 효율적이고 강력한 방법으로 널리 사용되고 있으나, 단일 네트워크를 통해 특징점 좌표를 즉시 얻을 수 없으며, 히트맵으로부터 특징점 좌표를 결정하는 과정에서 정확도가 손실된다는 단점이 존재한다. 이러한 문제점들을 해결하기 위해 본 논문에서는 기존의 히트맵 회귀 방법에 적분 회귀 방법을 결합할 것을 제안한다. 여러 가지 데이터셋을 사용한 실험을 통해 제안하는 적분 회귀 네트워크가 얼굴 특징점 검출 성능을 크게 향상시킨다는 것을 보인다.
스핀 영상은 3차원 표면의 특징을 효과적으로 표현하기 때문에 3차원 얼굴에서 특징점을 검출하는데 많이 이용된다. 하지만 기존의 스핀 영상은 표면의 법선 벡터 방향에 따라 매우 다른 스핀 영상이 만들어지는 단점이 있다. 또한 해당 영역 내에 존재하는 모든 점을 2차원으로 변환하여 고려하기 때문에 3차원 표면 특징이 모호해질 수 있다. 본 논문에서는 검색 영역을 분할한 스핀 영상을 이용하는 3차원 얼굴 특징점 검출 방법을 제안하였다. 기준점으로부터 떨어진 각도에 따라 검색범위를 분할하여 분할된 영역 내 점들에 대해 스핀 영상을 구성하여 방향에 따른 특징 추출을 극대화했다. 법선 벡터 평탄화를 이용하여 표면 법선 벡터 방향에 대한 잡음 민감성을 줄여 정확한 형태의 스핀 영상을 얻도록 했다. 실험을 통해 제안한 방법으로 찾은 특징점과 실측 특징점과의 거리차를 비교하여 기존방법에 비해 약 34% 향상된 정확도를 얻음을 확인했다.
본 논문은 실생활 속 정제되지 않은 입력으로 인해 안면의 특징점을 추출하여 객체 인식 모델의 이상적인 성능과 속도를 보증해주지 못하는 문제점을 가중치 합산을 통한 저장 알고리즘을 통해 개선하는 방법을 소개한다. 많은 안면인식 프로세스들은 이상적인 상황에서의 정확도를 보장해주지만, 실생활에서 발생할 수 있는 수많은 방해요인에 대해서는 대처하지 못한다는 문제점이 주목받고 있으며 이는 곧 보안과 밀접하게 관련된 안면인식 프로세스에서 심각한 문제를 발생할 수도 있다. 본 논문에서는 사람의 고유한 특징점은 사진의 구도 등의 여러 변수가 있어도 결국 평균적인 하나의 형태를 띤다는 점을 이용하여 입력으로 추출된 특징점을 여러 방해 요인에 과적합 되어있지 않은 소수의 특징점과 비교를 통해 실시간으로 빠르게, 그리고 정확하게 안면인식을 할수 있는 방법을 가중치 합산방식을 통하여 제시한다.
제안 모델은 얼굴 검출과 랜드마크 및 얼굴 인식 알고리즘을 이용하여 인공신경망으로 학습을 통해 얼굴 예측률과 인식률을 향상하는 모델을 구현하였다. 제안 모델은 특정 인물의 얼굴 영상에서 랜드마킹을 한 후, 기존에 학습된 Caffe 모델을 이용하여 얼굴검출과 임베딩 벡터 128D를 추출하였다. 학습은 기계학습 알고리즘인 SVM (support vector machine)과 DNN (deep neural network)을 구축하여 학습하였다. 얼굴인식은 학습된 모델을 이용하여 학습된 인물 중 다른 얼굴 영상으로 테스트하였다. 실험 결과, SVM 보다는 DNN으로 학습한 결과가 우수한 예측률과 인식률을 보였다. DNN의 중간층을 증가하게 되면 예측률은 높아지나 인식률이 감소하는 현상이 발생하였다. 이것은 인식하고자 하는 대상이 적음으로써 발생하는 과적합으로 판단된다. 제안 모델은 명확한 얼굴 영상을 추가하여 학습한 결과, 높은 예측률과 인식률의 결과를 얻을 수 있음을 확인할 수 있었다. 본 연구는 좀 더 많은 얼굴 영상 데이터를 이용함으로써 보다 효과적인 딥러닝 구축을 통해 보다 향상된 인식률과 예측률을 얻을 수 있을 것이다.
객체의 특징점을 추출할 때, 일반적으로 모델 기반 접근을 사용한다. 본 논문에서는 이러한 모델 기반 특징점 추출 알고리즘으로 PCA를 근간으로 하는 Active Appearance Model을 이용하는데, 기존의 AAM 알고리즘은 모든 특징점을 하나의 군집으로 기준하여 PCA를 수행하지만 본 논문에서는 이것을 각 주요 부위별 학습 모델로 분리하여 수행한다. 그리고 이러한 모델에서 특징점을 찾을 때, 발산하는 문제에 빠지지 않기 위한 방법을 제시한다. 제시한 방법의 모델을 이용하여 실험 할 경우의 결과와 이를 통한 개별 모델의 특성에 대하여 파악한 결과를 제시한다.
Malikovich, Karimov Madjit;Akhmatovich, Tashev Komil;ugli, Islomov Shahboz Zokir;Nizomovich, Mavlonov Obid
Journal of Multimedia Information System
/
제5권1호
/
pp.15-20
/
2018
There are a lot of problems in the face detection area. One of them is detecting faces by facial features and reducing number of the false negatives and positions. This paper is directed to solve this problem by the proposed triangle method. Also, this paper explans cascades, Haar-like features, AdaBoost, HOG. We propose a scheme using 12-net, 24-net, 48-net to scan images and improve efficiency. Using triangle method for frontal pose, B and B1 methods for other poses in neural networks are proposed.
본 연구에서는 휴대용 초음파 피부 미용기 사용시 집속 초음파의 조사 위치를 증강현실 (Augmented Reality: AR) 기법을 통해 사용자에게 보여주어 안전하게 셀프시술을 하도록 하는 안드로이드 앱을 개발하고 시험을 통해 유용성을 보인다. 사용자가 초음파 미용기로 얼굴 부위를 시술하는 동안에 스마트폰 카메라를 통해 사용자의 얼굴과 얼굴위의 초음파 조사 위치를 실시간 검지한 후, 얼굴 영상위에 조사 위치를 표시하여 사용자에게 보여줌으로서, 초음파가 동일한 부위에 과도하게 중복되어 조사되지 않도록 한다. 이를 위해 ML-Kit를 이용하여 사용자 얼굴의 랜드마크(landmark)들을 실시간 검지하고 얼굴형상 기준 모델과 비교하여 얼굴의 회전과 이동 등의 자세를 추정한다. 미용기의 초음파 조사부위에 LED를 장착하고 조사 중에 작동시킨 후, LED의 불빛의 위치를 탐색하여 스마트폰 화면상의 초음파 조사 위치를 알아내고, 추정된 자세정보를 토대로 얼굴 영상위에 조사 위치를 정합시켜 표시한다. 앱에서 수행되는 각 작업들을 스레드와 타이머를 통해 구현하여 전체 작업이 75ms 이내에서 실행된다. 시험 결과, 120개의 초음파 조사 위치를 정합하고 표시하는 데 걸린 시간은 25ms 이하이고, 얼굴이 크게 회전하지 않는 경우 표시 정확도는 20mm 이내 임을 알 수 있다.
Active shape model is widely used in the field of image processing especially on arbitrary meaningful shape extraction from single gray level image. Cootes et. al. showed efficient detection of variable shape from image by using covariance and mean shape from learning. There are two stages of learning and testing. Hahn applied enhanced shape alignment method rather than using Cootes's rotation and scale scheme. Hahn did not modified the profile itself. In this paper, the method using directional one dimensional profile is proposed to enhance Cootes's one dimensional profile and the shape alignment algorithm of Hahn is combined. The performance of the proposed method was superior to Cootes's and Hahn's. Average landmark estimation error for each image was 27.72 pixels and 39.46 for Cootes's and 33.73 for Hahn's each.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.