• Title/Summary/Keyword: Face Expression Detection

Search Result 66, Processing Time 0.023 seconds

Detection of Face Direction by Using Inter-Frame Difference

  • Jang, Bongseog;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.9 no.2
    • /
    • pp.155-160
    • /
    • 2016
  • Applying image processing techniques to education, the face of the learner is photographed, and expression and movement are detected from video, and the system which estimates degree of concentration of the learner is developed. For one learner, the measuring system is designed in terms of estimating a degree of concentration from direction of line of learner's sight and condition of the eye. In case of multiple learners, it must need to measure each concentration level of all learners in the classroom. But it is inefficient because one camera per each learner is required. In this paper, position in the face region is estimated from video which photographs the learner in the class by the difference between frames within the motion direction. And the system which detects the face direction by the face part detection by template matching is proposed. From the result of the difference between frames in the first image of the video, frontal face detection by Viola-Jones method is performed. Also the direction of the motion which arose in the face region is estimated with the migration length and the face region is tracked. Then the face parts are detected to tracking. Finally, the direction of the face is estimated from the result of face tracking and face parts detection.

Face Detection using Distance Ranking (거리순위를 이용한 얼굴검출)

  • Park, Jae-Hee;Kim, Seong-Dae
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.363-366
    • /
    • 2005
  • In this paper, for detecting human faces under variations of lighting condition and facial expression, distance ranking feature and detection algorithm based on the feature are proposed. Distance ranking is the intensity ranking of a distance transformed image. Based on statistically consistent edge information, distance ranking is robust to lighting condition change. The proposed detection algorithm is a matching algorithm based on FFT and a solution of discretization problem in the sliding window methods. In experiments, face detection results in the situation of varying lighting condition, complex background, facial expression change and partial occlusion of face are shown

  • PDF

Performance Analysis of Viola & Jones Face Detection Algorithm (Viola & Jones 얼굴 검출 알고리즘의 성능 분석)

  • Oh, Jeong-su;Heo, Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.477-480
    • /
    • 2018
  • Viola and Jones object detection algorithm is a representative face detection algorithm. The algorithm uses Haar-like features for face expression and uses a cascade-Adaboost algorithm consisting of strong classifiers, a linear combination of weak classifiers for classification. This algorithm requires several parameter settings for its implementation and the set values affect its performance. This paper analyzes face detection performance according to the parameters set in the algorithm.

  • PDF

A facial expressions recognition algorithm using image area segmentation and face element (영역 분할과 판단 요소를 이용한 표정 인식 알고리즘)

  • Lee, Gye-Jeong;Jeong, Ji-Yong;Hwang, Bo-Hyun;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.243-248
    • /
    • 2014
  • In this paper, we propose a method to recognize the facial expressions by selecting face elements and finding its status. The face elements are selected by using image area segmentation method and the facial expression is decided by using the normal distribution of the change rate of the face elements. In order to recognize the proper facial expression, we have built database of facial expressions of 90 people and propose a method to decide one of the four expressions (happy, anger, stress, and sad). The proposed method has been simulated and verified by face element detection rate and facial expressions recognition rate.

Recognition and Generation of Facial Expression for Human-Robot Interaction (로봇과 인간의 상호작용을 위한 얼굴 표정 인식 및 얼굴 표정 생성 기법)

  • Jung Sung-Uk;Kim Do-Yoon;Chung Myung-Jin;Kim Do-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • In the last decade, face analysis, e.g. face detection, face recognition, facial expression recognition, is a very lively and expanding research field. As computer animated agents and robots bring a social dimension to human computer interaction, interest in this research field is increasing rapidly. In this paper, we introduce an artificial emotion mimic system which can recognize human facial expressions and also generate the recognized facial expression. In order to recognize human facial expression in real-time, we propose a facial expression classification method that is performed by weak classifiers obtained by using new rectangular feature types. In addition, we make the artificial facial expression using the developed robotic system based on biological observation. Finally, experimental results of facial expression recognition and generation are shown for the validity of our robotic system.

Face Detection based on Matched Filtering with Mobile Device (모바일 기기를 이용한 정합필터 기반의 얼굴 검출)

  • Yeom, Seok-Won;Lee, Dong-Su
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.3
    • /
    • pp.76-79
    • /
    • 2014
  • Face recognition is very challenging because of the unexpected changes of pose, expression, and illumination. Facial detection in the mobile environments has additional difficulty since the computational resources are very limited. This paper discusses face detection based on frequency domain matched filtering in the mobile environments. Face detection is performed by a linear or phase-only matched filter and sequential verification stages. The candidate window regions are selected by a number of peaks of the matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering tests, which aim to remove false alarms among selected candidate windows. The algorithms are built with JAVA language on the mobile device operated by the Android platform. The simulation and experimental results show that real-time face detection can be performed successfully in the mobile environments.

Development of an Emotion Recognition Robot using a Vision Method (비전 방식을 이용한 감정인식 로봇 개발)

  • Shin, Young-Geun;Park, Sang-Sung;Kim, Jung-Nyun;Seo, Kwang-Kyu;Jang, Dong-Sik
    • IE interfaces
    • /
    • v.19 no.3
    • /
    • pp.174-180
    • /
    • 2006
  • This paper deals with the robot system of recognizing human's expression from a detected human's face and then showing human's emotion. A face detection method is as follows. First, change RGB color space to CIElab color space. Second, extract skin candidate territory. Third, detect a face through facial geometrical interrelation by face filter. Then, the position of eyes, a nose and a mouth which are used as the preliminary data of expression, he uses eyebrows, eyes and a mouth. In this paper, the change of eyebrows and are sent to a robot through serial communication. Then the robot operates a motor that is installed and shows human's expression. Experimental results on 10 Persons show 78.15% accuracy.

Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection (다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

Human Emotion Recognition based on Variance of Facial Features (얼굴 특징 변화에 따른 휴먼 감성 인식)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

The improved facial expression recognition algorithm for detecting abnormal symptoms in infants and young children (영유아 이상징후 감지를 위한 표정 인식 알고리즘 개선)

  • Kim, Yun-Su;Lee, Su-In;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.430-436
    • /
    • 2021
  • The non-contact body temperature measurement system is one of the key factors, which is manage febrile diseases in mass facilities using optical and thermal imaging cameras. Conventional systems can only be used for simple body temperature measurement in the face area, because it is used only a deep learning-based face detection algorithm. So, there is a limit to detecting abnormal symptoms of the infants and young children, who have difficulty expressing their opinions. This paper proposes an improved facial expression recognition algorithm for detecting abnormal symptoms in infants and young children. The proposed method uses an object detection model to detect infants and young children in an image, then It acquires the coordinates of the eyes, nose, and mouth, which are key elements of facial expression recognition. Finally, facial expression recognition is performed by applying a selective sharpening filter based on the obtained coordinates. According to the experimental results, the proposed algorithm improved by 2.52%, 1.12%, and 2.29%, respectively, for the three expressions of neutral, happy, and sad in the UTK dataset.