• Title/Summary/Keyword: Face Algorithm

Search Result 1,029, Processing Time 0.027 seconds

Real-time Face Tracking Method using Improved CamShift (향상된 캠쉬프트를 사용한 실시간 얼굴추적 방법)

  • Lee, Jun-Hwan;Yoo, Jisang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.861-877
    • /
    • 2016
  • This paper first discusses the disadvantages of the existing CamShift Algorithm for real time face tracking, and then proposes a new Camshift Algorithm that performs better than the existing algorithm. The existing CamShift Algorithm shows unstable tracking when tracing similar colors in the background of objects. This drawback of the existing CamShift is resolved by using Kinect’s pixel-by-pixel depth information and the Skin Detection algorithm to extract candidate skin regions based on HSV color space. Additionally, even when the tracking object is not found, or when occlusion occurs, the feature point-based matching algorithm makes it robust to occlusion. By applying the improved CamShift algorithm to face tracking, the proposed real-time face tracking algorithm can be applied to various fields. The results from the experiment prove that the proposed algorithm is superior in tracking performance to that of existing TLD tracking algorithm, and offers faster processing speed. Also, while the proposed algorithm has a slower processing speed than CamShift, it overcomes all the existing shortfalls of the existing CamShift.

Face and Hand Activity Detection Based on Haar Wavelet and Background Updating Algorithm

  • Shang, Yiting;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.992-999
    • /
    • 2011
  • This paper proposed a human body posture recognition program based on haar-like feature and hand activity detection. Its distinguishing features are the combination of face detection and motion detection. Firstly, the program uses the haar-like feature face detection to receive the location of human face. The haar-like feature is provided with the advantages of speed. It means the less amount of calculation the haar-like feature can exclude a large number of interference, and it can discriminate human face more accurately, and achieve the face position. Then the program uses the frame subtraction to achieve the position of human body motion. This method is provided with good performance of the motion detection. Afterwards, the program recognises the human body motion by calculating the relationship of the face position with the position of human body motion contour. By the test, we know that the recognition rate of this algorithm is more than 92%. The results show that, this algorithm can achieve the result quickly, and guarantee the exactitude of the result.

Face Image Compression using Generalized Hebbian Algorithm of Non-Parsed Image

  • Kyung Hwa lee;Seo, Seok-Bae;Kim, Daijin;Kang, Dae-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.847-850
    • /
    • 2000
  • This paper proposes an image compressing and template matching algorithm for face image using GHA (Generalized Hebbian Algorithm). GHA is a part of PCA (Principal Component Analysis), that has single-layer perceptrons and operates and self-organizing performance. We used this algorithm for feature extraction of face shape, and our simulations verify the high performance for the proposed method. The shape for face in the fact that the eigenvector of face image can be efficiently represented as a coefficient that can be acquired by a set of basis is to compress data of image. From the simulation results, the mean PSNR performance is 24.08[dB] at 0.047bpp, and reconstruction experiment shows that good reconstruction capacity for an image that not joins at leaning.

  • PDF

Deep Learning Based Fake Face Detection (딥 러닝 기반의 가짜 얼굴 검출)

  • Kim, DaeHee;Choi, SeungWan;Kwak, SooYeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.9-17
    • /
    • 2018
  • Recently, the increasing interest of biometric systems has led to the creation of many researches of biometrics forgery. In order to solve this forgery problem, this paper proposes a method of determining whether a synthesized face made of artificaial intelligence is real face or fake face. The proposed algorithm consists of two steps. Firstly, we create the fake face images using various GAN (Generative Adversarial Networks) algorithms. After that, deep learning algorithm can classify the real face image and the generated face image. The experimental results shows that the proposed algorithm can detect the fake face image which looks like the real face. Also, we obtained the classification accuracy of 88.7%.

Real Time Face Detection and Recognition based on Embedded System (임베디드 시스템 기반 실시간 얼굴 검출 및 인식)

  • Lee, A-Reum;Seo, Yong-Ho;Yang, Tae-Kyu
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • In this paper, we proposed and developed a fast and efficient real time face detection and recognition which can be run on embedded system instead of high performance desktop. In the face detection process, we detect a face by finding eye part which is one of the most salient facial features after applying various image processing methods, then in the face recognition, we finally recognize the face by comparing the current face with the prepared face database using a template matching algorithm. Also we optimized the algorithm in our system to be successfully used in the embedded system, and performed the face detection and recognition experiments on the embedded board to verify the performance. The developed method can be applied to automatic door, mobile computing environment and various robot.

  • PDF

An Improved Genetic Algorithm for Fast Face Detection Using Neural Network as Classifier

  • Sugisaka, Masanori;Fan, Xinjian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1034-1038
    • /
    • 2005
  • This paper presents a novel method to speed up neural network (NN) based face detection systems. NN-based face detection can be viewed as a classification and search problem. The proposed method formulates the search problem as an integer nonlinear optimization problem (INLP) and develops an improved genetic algorithm (IGA) to solve it. Each individual in the IGA represents a subwindow in an input image. The subwindows are evaluated by how well they match a NN-based face filter. A face is indicated when the filter response of the best particle is above a given threshold. Experimental results show that the proposed method leads to a speedup of 83 on $320{\times}240$ images compared to the traditional exhaustive search method.

  • PDF

A New Face Tracking Algorithm Using Convex-hull and Hausdorff Distance (Convex hull과 Robust Hausdorff Distance를 이용한 실시간 얼굴 트래킹)

  • Park, Min-Sik;Park, Chang-U;Park, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.438-441
    • /
    • 2001
  • This paper describes a system for tracking a face in a input video sequence using facial convex hull based facial segmentation and a robust hausdorff distance. The algorithm adapts YCbCr color model for classifying face region by [l]. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, a Robust Hausdorff distance is computed and the best possible displacement is selected. Finally, the previous face model is updated using the displacement t. It is robust to some noises and outliers. We provide an example to illustrate the proposed tracking algorithm in video sequences obtained from CCD camera.

  • PDF

Vehicle Face Recognition Algorithm Based on Weighted Nonnegative Matrix Factorization with Double Regularization Terms

  • Shi, Chunhe;Wu, Chengdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2171-2185
    • /
    • 2020
  • In order to judge that whether the vehicles in different images which are captured by surveillance cameras represent the same vehicle or not, we proposed a novel vehicle face recognition algorithm based on improved Nonnegative Matrix Factorization (NMF), different from traditional vehicle recognition algorithms, there are fewer effective features in vehicle face image than in whole vehicle image in general, which brings certain difficulty to recognition. The innovations mainly include the following two aspects: 1) we proposed a novel idea that the vehicle type can be determined by a few key regions of the vehicle face such as logo, grille and so on; 2) Through adding weight, sparseness and classification property constraints to the NMF model, we can acquire the effective feature bases that represent the key regions of vehicle face image. Experimental results show that the proposed algorithm not only achieve a high correct recognition rate, but also has a strong robustness to some non-cooperative factors such as illumination variation.

Face Tracking Using Skin-Color and Robust Hausdorff Distance in Video Sequences

  • Park, Jungho;Park, Changwoo;Park, Minyong
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.540-543
    • /
    • 1999
  • We propose a face tracking algorithm using skin-color based segmentation and a robust Hausdorff distance. First, we present L*a*b* color model and face segmentation algorithm. A face is segmented from the first frame of input video sequences using skin-color map. Then, we obtain an initial face model with Laplacian operator. For tracking, a robust Hausdorff distance is computed and the best possible displacement t. is selected. Finally, the previous face model is updated using the displacement t. It is robust to some noises and outliers. We provide an example to illustrate the proposed tracking algorithm in video sequences obtained from CCD camera.

  • PDF

Long Distance Face Recognition System using the Automatic Face Image Creation by Distance (거리별 얼굴영상 자동 생성 방법을 이용한 원거리 얼굴인식 시스템)

  • Moon, Hae Min;Pan, Sung Bum
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.137-145
    • /
    • 2014
  • This paper suggests an LDA-based long distance face recognition algorithm for intelligent surveillance system. The existing face recognition algorithm using single distance face image as training images caused a problem that face recognition rate is decreased with increasing distance. The face recognition algorithm using face images by actual distance as training images showed good performance. However, this also causes user inconvenience as it requires the user to move one to five meters in person to acquire face images for initial user registration. In this paper, proposed method is used for training images by using single distance face image to automatically create face images by various distances. The test result showed that the proposed face recognition technique generated better performance by average 16.3% in short distance and 18.0% in long distance than the technique using the existing single distance face image as training. When it was compared with the technique that used face images by distance as training, the performance fell 4.3% on average at a close distance and remained the same at a long distance.