• Title/Summary/Keyword: Fabrication Condition

Search Result 817, Processing Time 0.033 seconds

The study for fabrication and characteristic of Li$_2$O-2SiO$_2$conduction glass system using conventional and microwave energies (마이크로파와 재래식 열원을 이용한 고체 전지용 Li$_2$O-2SiO$_2$계 전도성 유리의 제조 및 특성에 관한 연구)

  • Park, Seong-Soo;Kim, Kyoung-Tae;Kim, Byoung-Chan;Park, Jin;Park, Hee-Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.66-72
    • /
    • 2000
  • The behavior of nucleation and crystallization in the $Li_2O_3-SiO_2$ glass heat-treated at different condition under the conventional and microwave processing was studied by differential thermal analysis (DTA), X-ray diffractometry (XRD), optical microscopy (OM), and electrical conductivity measurement. Nucleation temperature and temperature of maximum nucleation rate in both conventionally and microwave heat-treated samples were 460~$500^{\circ}C$ and $580^{\circ}C$, respectively. It was expected that the probability for bulk crystallization increased in microwave heat-treated sample, compared to conventionally heat-treated one. Degree of crystallization increased with increasing crystallization temperature in both conventionally and microwave heat-treated samples. However, pattern of crystallization growth under microwave processing appeared to be quite different from that under the conventional one due to its internal or volumetric heating. Electrical conductivity of conventionally and microwave heat-treated samples were 1.337~2.299, 0.281~~$0.911{\times}10^{-7}\Omega {\textrm}{cm}^{-1}$, respectively.

  • PDF

3-Dimensional LADAR Optical Detector Development in Geiger Mode Operation (Geiger Mode로 동작하는 3차원 LADAR 광수신기 개발)

  • Choi, Soon-Gyu;Shin, Jung-Hwan;Kang, Sang-Gu;Hong, Jung-Ho;Kwon, Yong-Joon;Kang, Eung-Cheol;Lee, Chang-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.4
    • /
    • pp.176-183
    • /
    • 2013
  • In this paper, we report the design, fabrication and characterization of the 3-Dimensional optical receiver for a Laser Detection And Ranging (LADAR) system. The optical receiver is composed of three parts; $16{\pm}16$ Geiger Mode InGaAs Avalanche Photodiode (APD) array device operated at 1560 nm wavelength, Read Out Integrated Circuit (ROIC) measuring the Time-Of-Flight (TOF) of the return signal reflected from target objects, a package and cooler maintaining the proper operational condition of the detector and control electronics. We can confirm that the LADAR system can detect the signal from a target up to 1.2 km away, and it showed low Dark Count Rate (DCR) of less than 140 kHz, and higher than 28%-Photon Detection Efficiency (PDE). This is considered to be the best performance of the $16{\pm}16$ FPA APD optical receiver for a LADAR system.

Study on the fabrication of Ceramic Core using a Gel-casting Process in Aqueous Medium(II) : Physical Properties of Sintered Ceramic Core Body (수용액 매체에서 젤-케스팅 공정을 이용한 세라믹 코어 제조에 관한 연구(II) : 세라믹 코어 소결체의 물성)

  • Kim, Jae-Won;Kim, Du-Hyeon;Kim, In-Su;Yu, Yeong-Su;Choe, Baek-Gyu;Kim, Ui-Hwan;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.465-471
    • /
    • 2001
  • The effect of sintering condition on the mechanical properties and leachability of polydispersed ceramic core body made by gel-casting process in aqueous medium have been investigated. The polydispersed ceramic slip that has low viscosity($\leq$1000cP, at 1000cP (at $50sec^{-1}$ ) and high solid loading(50vo1%) was obtained. The green bodies were fabricated through casting and gelation at room temperature followed by drying at $25^{\circ}C$for 48hrs under relative humidity of 80%. Crack-free green body was successfully fabricated through the above process. The strength at room temperature, apparent bulk density, and shrinkage of the ceramic core body increased propotionally with increasing sintering temperature(1100~150$0^{\circ}C$). However, porosity of the ceramic core body showed relatively low vague. Leaching rate of sintered core body increased with increasing porosity of the sintered body, and was significantly dependent upon the concentration of alkali caustic solution at the same leaching temperature.

  • PDF

Fabrication and Characteristics of Infrared Photodiode Using Insb Wafer with p-i-n Structure (p-i-n 구조의 InSb 웨이퍼를 이용한 적외선 광다이오드의 제조 및 그 특성)

  • Cho, Jun-Young;Kim, Jong-Seok;Son, Seung-Hyun;Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 1999
  • A highly sensitive photovoltaic infrared photodiode was fabricated for detecting infrared light in $3{\sim}5\;{\mu}m$ wavelength range on InSb wafer with p-i-n structure grown by MOCVD. Silicon dioxide($SiO_2$) insulating films for the junction interface and surface of photodiode were prepared using RPCVD because InSb has low melting point and evaporation temperature. After formation of In ohmic contacts by thermal evaporation, the electrical properties of the photodiode were characterized in dark state at 77K. A product of zero-bias resistance and area($R_0A$) showed $1.56{\times}10^6\;{\Omega}{\cdot}cm^2$ that satisfied BLIP(background limited infrared photodetector) condition. When the photodiode was tested under infrared light, the normalized detectivity of about $10^{11}\;cm{\cdot}Hz^{1/2}{\cdot}W^{-1}$ was obtained. we successfully fabricated a unit cell with InSb IR array with good quantum efficiency and high detectivity.

  • PDF

THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES (Glass ionomer cement 표면의 산부식 효과에 관한 연구)

  • Han, Seung-Weon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

Nano-scale Patterning on Diamond substrates using an FIB (FIB를 이용한 다이아몬드 기판 위의 나노급 미세 패턴의 형상 가공)

  • Song, Oh-Sung;Kim, Jong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1047-1055
    • /
    • 2006
  • We patterned nano-width lines on a super hard bulk diamond substrate by varying the ion beam current and ion beam sources with a dual beam field ion beam (FIB). In addition, we successfully fabricated two-dimensional nano patterns and three-dimensional nano plate modules. We prepared nano lines on a diamond and a silicon substrate at the beam condition of 30 kV, 10 pA $\sim$ 5 nA with $Ga^+$ ion and $H_2O$ assisted ion sources. We measured each of the line-width, line-depth, etched line profiles, etch rate, and aspect ratio, and then compared them. We confirmed that nano patterning was possible on both a bulk diamond and a silicon substrate. The etch rate of $H_2O$ source can be enhanced about two times than that of Ga source. The width of patterns on a diamond was smaller than that on a silicon substrate at the same ion beam power The sub-100 nm patterns on a diamond were made under the charge neutralization mode to prevent charge accumulation. We successfully made a two-dimensional, 240 nm-width text of the 300-lettered Lord's Prayer on a gem diamond with 30 kV-30 pA FIB. The patterned text image was readable with a scanning electron microscope. Moreover, three dimensional nano-thick plate module fabrication was made successfully with an FIB and a platinum deposition, and electron energy loss spectrum (EELS) analysis was easily performed with the prepared nano plate module.

  • PDF

Preparation and Characterization of Zaltoprofen-Loaded Polyoxalate Microspheres for Control Release (방출제어를 위한 잘토프로펜이 함유된 폴리옥살레이트 미립구의 제조와 특성)

  • Kim, Kyoung Hee;Lee, Cheon Jung;Jo, Sun A;Lee, Jung Hwan;Jang, Ji Eun;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.702-710
    • /
    • 2013
  • Zaltoprofen loaded polyoxalate (POX) microspheres were prepared by an emulsion solvent-evaporation/extraction method like oil-in-water (O/W) for sustained release of zaltoprofen. The influence of several preparation parameters such as fabrication temperature, stirring speed, intensity of the sonication, initial drug ratio, molecular weight ($M_w$) of POX, concentration of POX and concentration of emulsifier has been investigated on the zaltoprofen release profiles. Physicochemical properties and morphology of zaltoprofen loaded POX microspheres were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR). Through the analyzed results, it was demonstrated that the characteristics of the microspheres greatly affected by the prepared condition. The releases behavior of zaltoprofen was investigated for 10 days in vitro. It was confirmed that the release behavior of zaltoprofen can be controlled by the manufacturing factor of solvent-evaporation/extraction method.

Evaluation on the Structural Performance and Economics of Ultra-high Performance Concrete Precast Bridges Considering the Construction Environment in North Korea (북한 건설환경을 고려한 초고성능 콘크리트 프리캐스트 교량의 구조성능 및 경제성 평가)

  • Kim, Kyoung-Chul;Koh, Kyung-Taek;Son, Min-Su;Ryu, Gum-Sung;Kang, Jae-Yoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.208-215
    • /
    • 2021
  • In this study, a customiz ed bridge system was developed for North Korea application. For the application of North Korea, the customized bridge system design, fabrication, and construction performance evaluation were performed using ultra-high performance concrete a compressive strength 120MPa or more and a direct tensile strength 7MPa or more. The comparison of the North Korean truck luggage load(30, 40, 55) and the Korean standard KL-510 load showed that cross-section increased as the load increased. Furthermore, a bridge with a span length of 30m was fabricated with ultra-high performance concrete for the construction performance evaluation. The evaluation of the load condition analysis was performed by a flexural test. The results showed that a bridge with a span length of 30m secured about 167% of sectional performance under initial cracking load conditions and about 134% of load bearing capacity under ultimate load conditions. As a result of economic analysis, the customized bridge system using ultra-high-performance concrete was less than about 11% of the upper construction cost compared to the steel composite girder bridge. Therefore, these results suggest that the price competitiveness can be secured when applying the ultra-high-performance concrete long-span bridge developed through this study.

Optimization of preform mold injection molding process for hemispheric plastic structure fabrication (반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화)

  • Park, Jeong-Yeon;Ko, Young-Bae;Kim, Dong-Earn;Ha, Seok-Jae;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

Growth of ε-Ga2O3 film and fabrication of high quality β-Ga2O3 films by phase transition (ε-Ga2O3 박막의 성장과 상전이를 이용한 고품질 β-Ga2O3 박막의 제조)

  • Lee, Hansol;Kim, Soyoon;Lee, Jungbok;Ahn, Hyungsoo;Kim, Kyounghwa;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • ε-Ga2O3, a metastable phase of Ga2O3, has excellent compatibility with substrates having a hexagonal structure or a quasi-hexagonal structure, so that a film having a relatively lower surface roughness and defect density than β-Ga2O3 can be obtained easily. Accordingly, we attempted to fabricate a high-quality β-Ga2O3 film with a low surface roughness and defect density using the property of phase transition to β-Ga2O3 when ε-Ga2O3 is annealed at a high temperature. For this, the growth of high-quality ε-Ga2O3 films must be preceded. In this study, the optimal flow rate was investigated by analyzing the structural and morphological characteristics of the ε-Ga2O3 film according to the supplied precursor ratio. In addition, the annealing condition and the effect of β-Ga2O3 mixed in the ε-Ga2O3 film on the crystallinity of β-Ga2O3 after phase transition were also investigated.