Browse > Article
http://dx.doi.org/10.3807/KJOP.2013.24.4.176

3-Dimensional LADAR Optical Detector Development in Geiger Mode Operation  

Choi, Soon-Gyu (Yong In R&D Center, Samsung Thales)
Shin, Jung-Hwan (Yong In R&D Center, Samsung Thales)
Kang, Sang-Gu (Research Institute, I3system)
Hong, Jung-Ho (Research Institute, I3system)
Kwon, Yong-Joon (Agency for Defense Development(ADD))
Kang, Eung-Cheol (Agency for Defense Development(ADD))
Lee, Chang-Jae (Agency for Defense Development(ADD))
Publication Information
Korean Journal of Optics and Photonics / v.24, no.4, 2013 , pp. 176-183 More about this Journal
Abstract
In this paper, we report the design, fabrication and characterization of the 3-Dimensional optical receiver for a Laser Detection And Ranging (LADAR) system. The optical receiver is composed of three parts; $16{\pm}16$ Geiger Mode InGaAs Avalanche Photodiode (APD) array device operated at 1560 nm wavelength, Read Out Integrated Circuit (ROIC) measuring the Time-Of-Flight (TOF) of the return signal reflected from target objects, a package and cooler maintaining the proper operational condition of the detector and control electronics. We can confirm that the LADAR system can detect the signal from a target up to 1.2 km away, and it showed low Dark Count Rate (DCR) of less than 140 kHz, and higher than 28%-Photon Detection Efficiency (PDE). This is considered to be the best performance of the $16{\pm}16$ FPA APD optical receiver for a LADAR system.
Keywords
InGaAs APD; LADAR; Avalanche photodiode; Light detection and ranging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. S. Hyun and C. Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997).   DOI   ScienceOn
2 S. Verghese, K. A. McIntosh, Z. L. Liau, C. Sataline, J. D. Shelton, J. P. Donnelly, J. E. Funk, R. D. Younger, L. J. Mahoney, G. M. Smith, J. M. Mahan, D. C. Chapman, D. C. Oakley, and M. Brattain, "Arrays of 128${\times}$32 Inp-based Geiger-mode avalanche photodiodes," Proc. SPIE 7320, 7320M-1-8 (2009).
3 http://en.wikipedia.org/wiki/Time-of-flight_camera#cite_note-16.
4 J. P. Donnelly, E. K. Duerr, K. A. McIntosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, "Design considerations for 1.06 um InGaAsP-InP geier-mode avalanche photodiodes," IEEE J. Quantum Electron. 42, 797-809 (2006).   DOI   ScienceOn
5 J. Asbrock, S. Bailey, D. Baley, J. Boisvert, G. Chapman, G. Crawford, T. de Lyon, B. Drafahl, J. Edwards, E. Herrin, C. Hoyt, M. Jack, R. Kvaas, K. Liu, W. MckKeag, R. Rajavel, V. Randall, S. Rengarajan, and J. Riker, "Ultra-high sensitivity APD based 3D LADAR sensors," Proc. SPIE 6940, 69400 (2008).
6 D. Mosconi, D. Stoppa, M. Malfatti, M. Perenzoni, M. Scandiuzzo, and L. Gonzo, "A CMOS sensor based on single photon avalanche diode for fluorescence lifetime measurements," in Proc. Inst. & Meas. Technology Conference, IMTC 2006 (Sorrento, April 2006), pp. 416-419.
7 H. Ando, "Low-temperature Zn and Cd-diffusion profiles in InP and formation of guard ring in InP avalanche photodiodes," IEEE Transactions on Electron Devices 29, 1408-1413 (1982).   DOI   ScienceOn