• Title/Summary/Keyword: Fabric surface

Search Result 660, Processing Time 0.022 seconds

A Study on Softening Finish of Cotton Fabric using Cellulase (셀루라아제에 의한 면직물의 유연가공에 관한 연구)

  • Kang Ji-Yun;Ryu Hyo-Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.4 s.36
    • /
    • pp.262-273
    • /
    • 1990
  • The purpose of this study is to investigate the softening effect of cellulase-treated cotton fabric and the damage on the fabric which is accompanied by the treatemnt. Cotton fabric is treated with cellulase under various concentrations and time, and the weight loss, hand values (by KES), surface characteristics, moisture regain, tensile strength, copper number and intrinsic viscosity of the treated samples and untreated samples have been compared. The results are as follows: 1. The weight loss of cotton fabric increased as the concentration of cellulase and the treating time increased. 2. The enzyme treatment had little effect on the stiffness of the treated samples but anti- drape stiffness decreased for the treated samples. Fullness and softness of the treated samples increased and crispness decreased with the lowest level reaching after two hours of the treatment for all concentrations. Scrooping feeling of the treated samples increased and flexibility with soft feeling increased as the treating time and the concentration of cellulase increased. 3. Moisture regain of the samples decreased as the treating time and the concentration of the enzyme increased and the treated fabric showed cracks on the fiber surface, and much surface fibers on the fabric have been removed after the treatment. 4. Tensile strength of the samples decreased as the treating time and as the concentration of cellulase increased, and the copper number increased while the intrinsic viscosity decreased as the treating time increased, but cellulase concentration had a little effect.

  • PDF

Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Choubey, O.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.569-573
    • /
    • 2013
  • In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of $CO_2$ as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and $925^{\circ}C$), activation time (15, 30, 45 and 60 minutes) and $CO_2$ flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and $CCl_4$ onto ACF was investigated and both were found to correlate with surface area.

A Study on the Color Change in a Union Fabric simulated using a 3-dimensional CAD Software and Image Analysis

  • Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.10 no.6
    • /
    • pp.9-15
    • /
    • 2006
  • Colors of textile products or fashionable clothing play one of the most important roles. From the point of visual cues, the realism of an image is the result of a good interaction of local light scattering or transmittance model applied. A 3-dimensional CAD software was used to construct a solid plain fabric model. In order to simulate a union fabric with different warp and filling colors, rendering was performed on the fabric model. It was demonstrated that the iridescent effect, pearl effect, or superficial color change effect of the union fabric during wearer's movement could be explained using the fabric models at inclined fabric positions during viewer's observation.

Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil (PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향)

  • 강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF

Finishing of Interior Fabric Using Soluble Micro-fiber and low melting Yarn (용출형 극세사와 저온 융착사를 이용한 인테리어 직물의 가공)

  • Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.13 no.2
    • /
    • pp.78-86
    • /
    • 2009
  • When scouring and contraction finishing at $90^{\circ}C$ using Relaxer or Rotary Washer contraction and weight loss ratio in warp and weft directions were excellent. Also surface state of fabric after drying or sanding treatment was excellent without crease. Low melting polyester fabric showed a complete melting bond by heat setting(P/S) at above $160^{\circ}C$. The alkali hydrolysis reaction of polyester showed the breakpoint in the weight loss behavior test, polyester yarn showed a breakpoint ranging from 25% to 28%. This is due to the difference of the hydrolysis rate between regular polyester and soluble polyester. Initially the soluble polyester was eluted and micro-fibrillized 5 times faster than a regular polyester. At a later time, a regular polyester was reduced weight to impart a proper flexibility and drape property to the fabric. As a result of surface sanding finishing, the surface of interior fabric showed a surface state most stabilized when using Mesh No. 220 in mono 0.2d after elution finishing. When the rotation direction of sanding roller was pro-, pro-, pro-, and retro-direction, a directional effect of tuft was not shown, a writing effect as suede was exhibited and a surface state was even. Sublimation fastness was 3-4 class for polyester and 2-4 class for nylon. Light fastness 3-4 class after lapse of 100 hours and 2-4 class after lapse of 160 hours. Abrasion fastness was 3-4 class on wet and 4-5 class on dry Laundry fastness was 2-4 class. As such, the abrasion fastness is slightly reduced upon wetting and the use thereof for interior is excellent, whereas laundry fastness is slightly lowered.

Effects of Silicone Mixed Fluorochemical Finishes on Fabric Performance Characteristics of a Microfiber Polyester/Cotton Blend Fabric

  • Ahn, Young-Moo;Li, Bin;Kim, Charles J.
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.486-491
    • /
    • 2001
  • The purpose of this study was to examine the effects of chemical finishes on performance characteristics of microfiber blend fabrics. A 60% polyester microfiber/40% cotton blend woven fabric was finished by ten chemicals: three silicone softeners, one fluorochemical, and their mixtures. Performance characteristics examined were abrasion resistance, and oil/water repellency. Chemical finishes containing dimethylpolysiloxane silicone performed better in fabric abrasion resistance than other chemicals. The correlation between abrasion wear and instrumental measures of fabric hand indicated that the breaking strength loss by abrasion related negatively to the coefficient of friction. This implied that the finished fabrics with lower surface frictional coefficient (slipperier) had higher breaking strength loss by abrasion. The microfiber structure of polyester did not appear to help in oil/water repellency due to the larger surface areas of the microfibers. The fluorochemical finished fabric had the most significant improvement on oil/water repellency. The silicone-only finishes, however, did not improve oil/water repellency. When mixed with the fluorochemical, silicone finishes showed improved oil/water repellency.

  • PDF

3D Modeling of a Fabric based on its 3D Microstructure Image and Application of the Model of the Numerical Simulation of Heat Transfer

  • Lee, Hyojeong;Lee, Heeran;Eom, Ran-i;Lee, Yejin
    • Journal of Fashion Business
    • /
    • v.20 no.3
    • /
    • pp.30-42
    • /
    • 2016
  • The objective of this study was to perform 3D solid modeling from 3D scanned surface images of cotton and silk in order to calculate the thermal heat transfer responses using numerical simulations. Continuing from the previous methodology, which provided 3D surface data for a fabric through optical measurements of the fabric microstructure, a simplified 3D solid model, containing a defined unit cell, pattern unit and fabric structure, was prepared. The loft method was used for 3D solid-model generation, and heat transfer calculations, made for the fabric, were then carried out using the 3D solid model. As a result, comprehensive protocols for 3D solid-model generation were established based on the optical measurements of real fabric samples. This method provides an effective means of using 3D information for building 3D models of actual fabrics and applying the model in numerical simulations. The developed process can be used as the basis for other analogous research areas to investigate the physical characteristics of any fabrics.

Effect of Burn out Print Finishing on Cellulose Fiber Damage (섬유소계 직물의 탄화날염가공이 섬유손성에 미치는 영향)

  • 신정숙;송석규
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.124-131
    • /
    • 2001
  • To find out the effect of burn out print finishing for better quality of fabric, examined processing which could make less damages on the fiber because the biggest problem is remained fibers damage after burn out print finishing. Fiber damage examined to the condition of finishing material NaHSO$_4$and H$_2$SO$_4$, 3~10min., 100~13$0^{\circ}C$, glycerin. The fiber damages evaluated the break strength and the surface condition by SEM. Among satin, pile fabric which remained fiber is silk, warp knitted fabric which remained fiber is polyester, the fibers damage level were warp knitted fabric$0^{\circ}C$, glycerin and for 6 minutes by NaHSO$_4$. When carbonized by 20%. 50% and 70% to express textile design, carbonizing rate was not effect on the fiber damage very much. There was almost no damages with glycerine, and almost no damages during 3~6minutes fixation time, 10$0^{\circ}C$ steaming heat fixation by NaHSO$_4$and H$_2$SO$_4$. Without glycerine, there were damage by hydrolysis on polyesters surface and the fiver was broken by fixation time.

  • PDF

Water Repellent Finish of Polyester Fabric Using Glow Discharge Treatment (글로우방전을 이용한 폴리에스테르 직물의 투습방수성 개질)

  • 김태년
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.154-161
    • /
    • 2001
  • We have treated polyester fabric with $CF_4,\;C_2F_6,\;SF_6\;and\;C_3F_6$ glow discharge plasmas to develop functional fabrics which preserve moisture transportation and water proofing nature. Modified properties were evaluated by water vapor permeation rate and breakthrough water pressure. The change of surface morphology was observed by SEM. Fiber interstice of the plasma treated fabric was calculated as $0.32{\mu}{\textrm}{m}$, and this value was sufficiently ideal as water repellent material. The moisture transportation of ${CF_4}-treated$ fabric was good as much as untreated fabric, and those of $C_2$F(sub)6-treated, SF(sub)6-treated fabrics were reduced by 1~3%, and that of ${C_3F_6}-treated$ fabric was reduced by 15%. The best treatment condition were 0.06 torr 120 seconds in $CF_4$, 0.05 torr 30 seconds in $SF_6$, 0.08~0.15 torr 90 seconds in $SF_6$ and 0.1 torr 45 seconds in $C_3F_6$ respectively. The grade of moisture transportation effect was $CF_4>C_2F_6>SF_6>>C_3F_6$, and water proofing effect was $C_2F_6{\approx}CF_4>C_3F_6>SF_6$. It was observed by SEM that the thin film was formed on the surface of the treated substrate by the fluorocarbon plasma treatment.

  • PDF

Biodegradation of Cotton/Polyester Blends (면/폴리에스터 혼방직물의 생분해성 평가)

  • Lee, Seung-Hyun;Park, Chung-Hee;Im, Seung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.2
    • /
    • pp.347-355
    • /
    • 2005
  • Biodegradability of cotton/polyester blend fabric was investigated employing activated sluge test, soil burial test and enzyme hydrolysis. Surface changes of the degraded sample were observed through a microscopy. Changes in X-ray diffraction patterns and crystallinity were examined using X-ray diffractometer. Experimental results revealed that biodegradability of cotton/polyester blend fabric was proportional to the blending ratio of cotton, not showing any synergy effect. Polyester 100% hardly degraded in this study. Through the comparison of the experimental method it was shown that the biodegradabilities determined from activated sludge test and enzymatic hydrolysis except soil burial test were linearly related to the blending ratio of cotton in the blent fabrics. It is probably because the biodegradability determined from the retention of tensile strength of fabrics buried in soil was affected by the stress distribution of polyesters throughout the fabric. From the microscopic observations it was revealed that fungi were grown on the fabric surface and the colors turned yellow, brown and black. X-ray diffraction patterns showed that the heights of crystalline peak coming from cotton part in blend fabrics decreased whereas those coming from polyester part increased comperatively as time passed by. Crystallinities of cotton 100% fabric increased slightly at the begining and then decreased continuously.