• Title/Summary/Keyword: Fabric filter

Search Result 75, Processing Time 0.025 seconds

Field Experiment on Iron and Aluminum Removal from Acid Mine Drainage Using an Apatite Drain System (인회석 배수시스템을 이용한 산성수의 철 및 알루미늄 제거에 대한 현장경험)

  • Choi, Jung-Chan;West, Terry R.
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.315-323
    • /
    • 1996
  • An apatite drain was constructed on September 30, 1994 at the Green Valley Abandoned Coal Mine site near Terre Haute in west central Indiana. The primary objective of this experiment is to evaluate the long-term ability of the apatite drain to mitigate acid mine drainage (AMD) under field conditions. The drain 9 m long, 3.3 m wide, and 0.75 m deep, contain 95 rum to No. 30 mesh-size apatite ore (francolite) and receive AMD seepage from reclaimed gob piles, and designed according to the laboratory testing. The apatite drain was covered with limestone riprap and filter fabric to protect the drainage system from stormwater and siltation. The drain consists of about 50 metric tons of apatite ore obtained from a phosphate mine in Florida. A gabion structure was constructed downstream of the apatite drain to create a settling pond to collect precipitates. Apatite effectively removed iron up to 4,200 mg/l, aluminum up to 830 mg/l and sulfate up to 13,430 mg/l. The pH was nearly constant for the influent and effluent, ranging between 3.1 and 4.3. Flow rate measured at the gabion structure ranged from 3 to 4.5 l/m. Precipitates of iron and aluminum phosphate (yellow and white suspendid solids) continued to accumulate in the settling pond.

  • PDF

Synthesis of Amino-type Anion Exchanger from Acrylic Acid Grafted Polypropylene Nonwoven Fabric and Its Ion-Exchange Property (아크릴산 그라프트 폴리프로필렌 부직포로부터 아민형 음이온 교환체의 합성 및 이온교환특성(I))

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2006
  • The purpose of this study is the development of more effective filter-type polymer adsorbent for removal of anionic pollutants from wastewater. In order to synthesize the polymer adsorbent that possesses anionic exchangeable function, carboxyl(-COOH) group of PP-g-AA nonwoven fabric was converted into amine($-NH_2$) group by the chemical modification using diethylene triamine(DETA). FT-IR data indicate that amine group was introduced into PP-g-AA through amidation of grafted acrylic acid by reaction with DETA. The degree of amination increased with increase in the reaction time and temperature of the chemical modification process, and was significantly improved by the pre-swelling treatment of PP-g-AA with solvent and addition of metal chlorides as a catalyst in following order as $NH_4OH>MeOH{\geq}HCl{\geq}H_2O\;and\;AlCl_3>FeCl_3{\geq}SnCl_2{\gg}ZnCl_2{\geq}FeCl_2$, respectively. However, the addition of catalyst limited the reusability of DETA, hence was less useful from the viewpoint of cost effectiveness and waste management. The anion exchange capacity of the aminated PP-g-AA(PP-g-AA-Am) increased with increase in the degree of amination, but it reached maximum value at the degree of amination as about $50{\sim}60%$. The anion exchange capacity of PP-g-AA-Am was higher than those of commercial anion resins.

A Study on the PM2.5 Concentration in the Car in Jeonju Downtown (전주시 중심가를 주행중인 승용차내 초미세먼지(PM2.5) 농도 변화에 대한 연구)

  • Moon, Hyung Suk;Kim, Jong Soo;Kim, In Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.717-723
    • /
    • 2013
  • The Korea Ministry of Environment prepares some paticulate matter eliminate measures for national health protection, as the Paticulate Matter ($PM_{2.5}$) exceeds the standard at more than half of the monitoring posts installed in the nation's big cities. At the center of JeonJu, when measuring the ultrafine particles of inner car at the different driving conditions, at the condition of the Actuator of inner recirculation mode and the Blower of 2-speed, the reduction speed of the ultrafine particles is most fast and the concentration stays low. When the windows are opened during driving, outer pollutants enter the car and also inner paticulate matter flies in all direction, and the increase of passengers causes the scattering of the ultrafine paticles. As the filter for air cleaning, the using of polypropylene non-woven fabric (used commonly now) is most excellent, but for the removal of volatile organic substance as well as the paticulate matter, it is thought that the using of activated carbon fiber filter, carbon adsorbent, is even more excellent.

Resistive E-band Textile Strain Sensor Signal Processing and Analysis Using Programming Noise Filtering Methods (프로그래밍 노이즈 필터링 방법에 의한 저항 방식 E-밴드 텍스타일 스트레인 센서 신호해석)

  • Kim, Seung-Jeon;Kim, Sang-Un;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2022
  • Interest in bio-signal monitoring of wearable devices is increasing significantly as the next generation needs to develop new devices to dominate the global market of the information and communication technology industry. Accordingly, this research developed a resistive textile strain sensor through a wetting process in a single-wall carbon nanotube dispersion solution using an E-Band with low hysteresis. To measure the resistance signal in the E-Band to which electrical conductivity is applied, a universal material tester, an Arduino, and LCR meters that are microcontroller units were used to measure the resistance change according to the tensile change. To effectively handle various noises generated due to the characteristics of the fabric textile strain sensor, the filter performance of the sensor was evaluated using the moving average filter, Savitsky-Golay filter, and intermediate filters of signal processing. As a result, the reliability of the filtering result of the moving average filter was at least 89.82% with a maximum of 97.87%, and moving average filtering was suitable as the noise filtering method of the textile strain sensor.

Development of Antibacterial Hood and Filter for Medical Powered Air Purifying Respirators (PAPR) (의료용 전동공기청정호흡기(PAPR)용 항균성 후드 및 필터 개발)

  • Eunjoo Koh;Nahyun Cho;Yong Taek Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.398-408
    • /
    • 2023
  • This work developed a hood and filter for antibacterial protective clothing for medical powered air purifying respirators (PAPR) that can be used in medical settings and quarantine against infectious diseases such as Zika virus, Middle East respiratory syndrome (MERS), and coronavirus disease-19 (COVID-19). The hood material of the protective clothing was made of polypropylene spunlace nonwoven fabric (SFS) was used for withstand wind pressure and external physcial pressure. Forthermore, in order to reduce the user's risk of infection, phytoncide-based materials were used on the outer-surface of the hood to achieve a 99.9% antibacterial effect, and the inner-surface were treated with hydro-philic materials to improve absorbency by 25%. In addition to evaluating the artificial blood penetration resistance, dry mi-croorganism penetration resistance, wet bacteria penetration resistance, and bacteriophage penetration resistance required for medical protective clothing hoods, it received a passing evaluation of levels 2-6. Meanwhile, as a result of evaluating the performance of the antibacterial treated spunlace high efficiency particulate air (HEPA) filter, excellent antibacterial properties, dust removal rate, and differential pressure effect were confirmed. All performance evaluations were conducted by an accredited certification body in accordance with the medical PAPR certification standards.

Adsorption Capacity and Antibacterial Activity of Porous Feldspar Porphyry (다공성 구조가 발달한 장석반암의 흡착과 항균성 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Cho, Jinwoo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • As weathering processes, micro-cavities are formed on the surface of rocks, and in particular, the porous structure is increased in feldspar. Adsorption and antibacterial tests were carried out to clarify the environmental function of porous feldspar porphyry. Almost all the heavy metals were adsorbed in the feldspar filter and the adsorption rate could be controlled by changing the filter length. The shake flask method of fabric coated with 5% and 7% feldspar powder showed very high antibacterial activity of 98% and 99.9%, respectively. The cation exchange capacity at a particle size of $10{\mu}m$ was 114.63 meq/100g probably due to the porous structure. The potential value of porous feldspar porphyry as a resource is sufficient based on the results of the experiment.

A Study of the Structures and Product Dimensions of Hygienic Face Mask for Infants and Children in the Domestic Market (국내 시판 유아동 보건용 마스크 구조 및 제품 치수 비교 연구)

  • Ji Eun Kim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.3
    • /
    • pp.113-125
    • /
    • 2023
  • The COVID-19 pandemic has led to the normalization of mask-wearing worldwide, and young children are particularly vulnerable to respiratory diseases. Children's masks come in various sizes and shapes, causing confusion among consumers who struggle to find products that can accommodate their child's unique physical conditions. This research aims to analyze the shape and dimensions of health masks designed for young children. A total of 67 mask varieties were collected, and 58 were subjected to analysis. The masks were found to have two primary shapes: foldable and beak-like, with sizes categorized as small and extra-small. The majority of masks were manufactured in Korea, and the size labeling systems varied among manufacturers. The mask materials were non-woven fabric or polypropylene, and there was diversity in terms of the adjustable earbands and the use of additional accessories. The dimensions of the masks varied depending on their shape, with significant differences in the weight and the length of the wire holes. Subsequent research should focus on conducting wearability evaluations to verify the dimensional suitability of commercially available children's health masks based on shape and size. Additionally, this study aims to provide foundational data that can assist in the development of children's masks with size ranges that differentiate them from adult masks and cater to specific age groups.

Optical system design of a mobile LIDAR for air polution research (대기오염 연구용 이동형 LIDAR 광학계 설계)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.191-195
    • /
    • 1996
  • A optical system of a movile LIDAR is designed for air pollution research. After the inverse Cassegrain type collimator, the laser beam falls on the mirror which serve for coinciding optical axis of laser beam and the receiving telescope. Then, it is directed into the atmosphere and back scattered radiation back to the receiving telescope by the scanning mirror. The unit of scanning mirror allows to rotate the mirror along the altitude 0$^{\circ}$~60$^{\circ}$, and the azimuth 0$^{\circ}$~360$^{\circ}$. The scanning mirror is not connected with the receiving telescope but placed on the roof of the mobile. The received beam is spatial filtered by a spatial filter and collimated by a fabric lens. Thereafter, the beam is devided into 2 channel for registration by a beam splitter. Each laser beam is transformed into an electrical signal by means of the photomultifier and then processed to be analyzed.

  • PDF

Effects of MLSS Concentration and Influent C/N Ratio on the Nitrogen Removal Efficiency of Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactors (교차 간헐 포기식 부직포 여과막 생물반응조에서 MLSS 농도 및 유입수 C/N 비가 질소 제거효율에 미치는 영향)

  • Jung, Kyoung-Eun;Bae, Min-Su;Lee, Jong-Ho;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.501-510
    • /
    • 2006
  • To investigate the effects of MLSS concentration and influent C/N ratio on the nitrogen removal efficiency of alternately intermittently aerated nonwoven fabric filter bioreactors, the MLSS concentrations of the reactors were maintained at approximately 5,500 mg/L, 10,000 mg/L and 15,000 mg/L, and the influent TCOD/TKN ratio was decreased gradually from 5 to 2 by adding $NH_4Cl$. The influent was prepared by diluting a food waste leachate to a TCOD concentration of about 300 mg/L. The results of the experiment showed F/M ratios less than 0.112 g TCOD/g MLSS-day, average TCOD removal efficiencies of above 95%, and an average observed microbial yield coefficient of 0.283 g MLSS/g COD removed. The nitrification efficiencies were computed to be always better than 96% except one case where the nitrification efficiency was 90.5% when the MLSS concentration and the influent TCOD/TKN ratio was 5,500 mg/L and 2, respectively. The denitrification efficiency deteriorated as the influent TCOD/TKN ratio decreased. The average denitrification efficiency at the MLSS concentration of 10,000 mg/L was 10.7% better than that at the MLSS concentration of 5,500 mg/L, and the denitrification rate improved at a rate of 2.66 mg NL as the MLSS concentration increased by 1,000 mg/L. When the MLSS concentration was 15,000 mg/L, however, the average denitrification efficiency was merely 4.6% higher compared to when the MLSS concentration was 5,500 mg/L, and the denitrification rate increased at a rate of 0.75 mg N/L per 1,000 mg/L MLSS increase. Therefore, no strict proportional relationship was found between MLSS concentration and endogenous denitrification rate. The average alkalinity consumption rate was 3.36 mg alkalinity/mg T-N removed, which is similar to the theoretical value of 3.57 mg alkalinity/mg T-N removed, but the rate increased as the influent TCOD/TKN ratio decreased.

Toxicity of Silver Nanoparticles and Application of Natural Products on Fabric and Filters as an Alternative (은나노 입자의 독성 메커니즘 및 천연물을 활용한 은나노 대체 항균 소재 연구)

  • Karadeniz, Fatih;Kim, Han Seong
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.864-873
    • /
    • 2018
  • There has been increasing attention and research in various nanoparticle applications. Nanoparticles have been used for a variety of purposes in different departments including but not limited to cosmetics, food, machinery, and chemical. A highly sought-after field to use nanoparticles, especially natural or artificial silver nanoparticles (SNPs), is the utilization of their significant antimicrobial properties in daily items such as fabrics, indoor air filters, and, water filtration units where abundant bacterial and fungal growth are inevitable. These applications of SNPs, however, have enabled continuous human exposure and hence paved the way for potential SNP toxicity depending on exposure method and particle size. This potential toxicity has led to researches on safer antimicrobial solutions to be utilized in textile and filtration. In this context, products of natural origin have gained expanding interest due to their eco-friendly, cost-effective, and biologically safe properties along their promising antibacterial and antifungal activities. Natural product-applied fabrics and filters have been shown to be comparable to those that are SNP-treated in terms of ease production, material durability, and antimicrobial efficiency. This article summarizes and assesses the current state of in vitro and in vitro toxicity of SNPs and discusses the potential of natural products as an alternative.