• 제목/요약/키워드: Fabric Properties

Search Result 1,183, Processing Time 0.031 seconds

Mechanical Properties and Sensibility Evaluation of Jacquard Fabric with Optical Fiber (광섬유 자카드 직물의 역학적 특성 및 감성평가)

  • Roh, Eui Kyung;Song, Byung Kab;Kim, Min Su
    • Fashion & Textile Research Journal
    • /
    • v.19 no.2
    • /
    • pp.240-248
    • /
    • 2017
  • This study compares general jacquard fabrics and jacquard fabrics with optical fiber on mechanical properties, sensibility and preference evaluation of fabric for the blind. The analysis also assesses the effect of optical fiber in the evaluation and identifies those best suited for consumers. The mechanical properties of jacquard fabrics were measured by the KES-FB system. Sensibility and the preference of the jacquard fabric for the blind were rated on tactile sensation by women experts in their 20's and 30's. It was found that the optical fiber in jacquard fabric affected the change of mechanical properties as well as sensibility and preference. Jacquard fabric with optical fiber were softer and more transformable, while the fabrics had lower recover property by shear force and compression as well as more violent unevenness. Jacquard fabrics were also classified into three hand factors of surface property, resilience and weightiness. There were significant differences on surface property perceptions and weightiness, hand and blind preferences by optical fiber. Jacquard fabrics that contained optical fiber were not preferred by the blind because they were perceived to be uneven and heavy. Those, that were smooth and light, were preferred for jacquard fabric; in addition, fabrics preferred by the blind had good compression.

Effects of the Rapier Weaving Tension Characteristics on the Surface Properties of PET Fabrics (래피어 직기 장력특성이 PET 직물의 표면특성에 미치는 영향)

  • Kim, Seung-Jin;Park, Kyung-Soon
    • Fashion & Textile Research Journal
    • /
    • v.7 no.6
    • /
    • pp.673-679
    • /
    • 2005
  • This study surveys the fabric surface properties such as mean value of the coefficient of friction(MIU), mean deviation of the coefficient of friction(MMD) and mean deviation of surface roughness(SMD) due to warp and weft tension differences using KES-FB system. For this purpose, fabric is designed as 5 harness Satin weave using 150d/48f warp and 200d/384f weft polyester filaments, and is woven by Omega$^{(R)}$ rapier loom by Textec Co.Ltd and Vamatex-P1001ES$^{(R)}$ rapier loom by Vamatex Co.Ltd respectively. These grey fabrics are processed on the same dyeing and finishing processes. The fabric surface properties according to the weaving looms are analysed with warp and weft weaving tensions. And also surveyed the difference of fabric surface properties according to the fabric positions such as center and each edge of fabrics for the sensitive garment. Fabric thickness was also measured and discussed according to the fabric positions such as center and each of fabrics with two looms weaving tensons.

The Variation of Mechanical Properties with Directions of PET High Stretch Fabrics (PET 고신축사 직물의 방향에 따른 역학적 특성의 변화)

  • 김영민;박종범;김주애;조현혹
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.160-167
    • /
    • 2002
  • Stretch fabrics are wide-spread for high performance clothing use with requirements of fitness and adaptability to human's movement. A newly developed 100% PET high stretch fabric has excellent properties with respect to stretch, softness, bulkiness, and apparent volume compared to PET filament fabrics. The 100% PET high stretch fabric shows advantages of a dimensional stability, dye and agent adaptability in dying and finishing process, a property of stretch recovery after washing and lower production cost than that of spandex fabric. KES-FB was used to measure mechanical properties to various directions of the fabric. This study centered on whether the 100% PET high stretch fabric is suitable to quality and shape retention of fabric by testing several properties including tensile, compression, shear, bending and surface characteristic to various measuring directions. Tensile linearity showed maximum value at $0^{\circ}$ in plain and $90^{\circ}$ in twill. Shear Stiffness of plain and twill showed maximum value equally at $45^{\circ}\;and\;135^{\circ}$. Bending rigidity showed maximum value at $0^{\circ}$ in plain and $45^{\circ}$ twill. Mean deviation of MIU showed maximum value at $0^{\circ}\;and\;90^{\circ}$ in plain and $135^{\circ}$ in twill.

On the Change of Fabric Mechanical properties in Ultrasonic Fabric Washing System (호부직물의 초음파 수세에 의한 역학적 특성의 변화)

  • Lee, Choon-Gil;Park, Sung-Diuk;Oh, Bong-Hyo
    • Textile Coloration and Finishing
    • /
    • v.9 no.4
    • /
    • pp.28-38
    • /
    • 1997
  • Peach skin fabrics were washed by the general and ultrasonic washing systems using different conditions. The physical properties of the washed fabrics were estimated. The following results were obtained through experimental data and their analysis. The tensile properties were changed due to fabric running speed and washing methods. The lower the running speed, the higher the extensibility and resilience and the lower the linearity and tensile energy. In the general washing method, the extensibility and resilience had lower values than those of the ultrasonic washing method and the linearity and tensile energy had the higher values than those of the ultrasonic washing system. The bending properties, bending moment and histeresis, were estimated. These values were generally lower in the ultrasonic washing system than those of the general washing system. The faster the washing speed, the higher the value of hysterisis. The shear properties were affected by the fabric running speed and washing methods. Shear stiffness and hysteresis of shear forces increased according to the increase of the fabric running speed. The values were higher in the general washing system than those of the ultrasonic washing system. The compressional energy was affected by the fabric running speed. The higher the fabric speed the higher the compressional energy. The ultrasonic washing system had lower compressional energy than the general washing system. The higher the running speed, the lower the coefficient of friction and geometrical roughness. The values of geometrical roughness were infienced by the removal of the sizing agent. The higher the remaining sizing agent, the higher the fabric weight and the thicker the thickness of fabric.

  • PDF

Estimation of fabric properties using Cusick Drape simulation (Cusick Drape 시뮬레이션을 이용한 옷감의 물성 예측)

  • Kim, Jin-Kyum;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.80-81
    • /
    • 2022
  • In this paper, the physical properties of actual fabric data are predicted using the Cusick drape system, which is a means of measuring the physical properties of fabrics. Using a three-dimensional volumetric system, the cloth data of the actual Cusick drape system is acquired in a three-dimensional point cloud format. Cusick drape simulation is performed using mesh data of the same shape and size as the fabric, and the physical parameters of the draped fabric most similar to the actual draped fabric are acquired.

  • PDF

Computation of equivalent material properties of woven fabric composites using homogenization technique (균질화기법을 이용한 WFC의 등가물성치 산출)

  • Jang, Ji-hyun;Yoon, Min-woo;Lee, Jin-hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.588-594
    • /
    • 1998
  • Reliable three-dimensional models of woven fabric composites had scarcely been proposed for their geometric complexity. Simplified models, mostly one- or two-dimensional, currently used are not considered effective enough because of their oversimplifications. In this paper, the equivalent thermal conductivities and elasticity properties of woven fabric composites are computed using homogenization technique. The computational results show that the strength and thermal conductivity linearly increase with fiber volume fraction and that the variations of undulation of fibers has little effect on equivalent material properties. Homogenization technique is proved useful in the study of woven fabric composites and may find a lot more applications in the area.

Sensory Evaluation of Fabric Touch by Free Modulus Magnitude Estimation

  • Cho, Gilsoo;Kim, Chunjeong;Casali, John G.
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.169-173
    • /
    • 2002
  • Fabric touch was evaluated psychophysically in order to determine the relationship between mechanical properties and subjective sensation. For subjective touch sensation, eight aspects such as hardness, smoothness, coarseness, coolness, pliability, crispness, heaviness and thickness were evaluated using free modulus magnitude estimation (FEME) technique. KES-FB was used to measure the mechanical properties of fabrics. Woolen fabric with the highest values of WC and weight was evaluated as the coarsest, heaviest and thickest. While silk crepe do chine with the lowest LT, G, 2HG, thickness and weight was rated as smoother and more pliable than any other fabrics. And flax with the highest values of LT and SMD was evaluated as hard, cool and crisp. Fabric touch and satisfaction were predicted well from the mechanical properties, especially from SMD, by regression analysis. Satisfaction for touch increased as smoothness increased.

The Appearance-related Properties and the Mechanical Properties of Lyocell-interlining Bonded Fabric (리오셀직물 심지접착포의 외관적 성능과 역학적 특성)

  • Kim, In-Young;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.12 s.159
    • /
    • pp.1683-1689
    • /
    • 2006
  • Precedent researches on lyocell are mostly on lyocell structure, characteristics, physical properties by finishing and dyeability, and the like; there are little cases of researches on interlining for lyocell clothes production. To serve as a base information helpful to select fusible interlining and improve the efficiency of sewing process considering the characteristics of lyocell, this study performed t-est, F-test toward to the difference in the appearance-related properties and the mechanical properties of lyocell-interlining bonded fabric in accordance with the characteristics of fusible interlining and lyocell face fabric. This study reached following conclusions. Drapability and Crease recovery of lyocell-interlining bonded fabric are influenced by the structure of fusible interlining; stiffness of lyocell-interlining bonded fabric, by the structure of fusible interlining and the yam number of lyocell face fabric. WT is influenced by the mixture rate and yam number of lyocell face fabric. RT is influenced by the yam number of lyocell face fabric; G, 2HG, 2HG5, by the structure(woven and non-woven) of fusible interlining; B, HB, by the weight, structure(woven and non-woven) of fusible interlining, and yam number of lyocell face fabric; WC, by the weight, structure of fusible interlining; RC, by the structure of fusible interlining; thickness, by the weight of fusible interlining and the yarn number of lyocell face fabric; weight, by mixture rate and yam number of lyocell face fabric.

Effect of Yarns Cross-Sections and Structure Parameters of Its Knitted Fabrics to Moisture Transport of Perspiration Absorption and Fast Dry Fabrics (실 단면 형상과 니트 구조 인자가 흡한속건 소재의 수분이동 특성에 미치는 영향)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.20 no.4
    • /
    • pp.457-463
    • /
    • 2018
  • This study examined the water absorption and drying properties of the thirteen types of the knitted fabrics for sports wear. These physical properties were analysed with relation to the constituent fiber cross-sectional shape and structure parameters of the knitted fabrics by regression analysis. Absorption and drying properties of the knitted fabric specimens were increased with increasing the porosity of the constituent yarns, which was attributed to the capillary channels in the yarns. The water absorption and drying properties were increased and decreased with increasing tightness factor and stitch density of the knitted fabric. The absorption property of the knitted fabric for perspiration absorption and fast dry sport-wear clothing was mostly influenced mostly by fiber cross-sectional shape and its characteristics, whereas, drying property was dependent on the structural parameters of the knitted fabric such as tightness factor and stitch density. Therefore, superior perspiration absorption and fast drying knitted fabric could be obtained in the fabric structure with optimum tightness factor and stitch density, and constituent yarn structure with non-circular fiber crosssection and high porosity. GATS method and MMT method are used to measure sweating fast drying properties and it is necessary to carry out studies using these measurement methods in order to compare with the results of this study.

The Mechanical Properties and Hand Evaluation of Bedclothes with Hollow Spun Yarn (중공사를 이용한 침장용 소재의 구조적 특성에 따른 역학적 특성 및 태분석)

  • Choi, Hyunseuk;Jang, Hyunmi;Jung, Moonkyu;Jeon, Younhee;Bae, Jihyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.298-311
    • /
    • 2019
  • In this study, the mechanical properties and hand characteristics of the knitted and woven fabrics for bedding items are investigated in accordance with fabric structural parameters including the fiber type and proportion, the density of the fabric, and the knit/weave structure. The knit stitches and structure of the knit samples made an effect on tensile properties. The bending, shear and compression properties for the knit fabric were mainly affected by fiber contents of the samples. The tensile and bending properties of woven samples were highly correlated with the fabric density, thickness and structure, and those shear and compression properties were affected by the fiber contents and structure. Consequently, the primary hand values of the selected samples we developed were estimated to have good smoothness, fullness and softness, and soft feeling, which is well correlated to the parameters of consumer preference such as softness, warmness, and bulkiness. Also, their total hand values were increased.