• 제목/요약/키워드: Fabric Composite

검색결과 366건 처리시간 0.021초

중공 복합사 특성이 고감성 의류용 직물의 쾌적성에 미치는 영향 (Effect of Hollow Composite Yarn Characteristics to the Comfort Property of Fabrics for High Emotional Garment)

  • 김현아
    • 감성과학
    • /
    • 제17권4호
    • /
    • pp.71-78
    • /
    • 2014
  • PET 중공필라멘트 복합 DTY(Draw Textured Yarns)와 ATY(Air-jet Textured Yarns)는 경량의 스포츠 의류를 포함한 고감성 의류용으로 많이 사용되고 있다. 본 연구는 중공섬유 복합 DTY와 ATY 복합사 직물의 수분 및 열이동에 관계되는 쾌적특성에 중공 복합사 및 직물의 구조 특성이 어떠한 영향을 미치는 가에 대한 분석이다. 기공의 크기가 큰 중공 복합 직물의 흡수성이 우수하였고 커버팩터는 영향을 미치지 않았다. 또한 ATY사 직물이 DTY사 직물에 비해 흡수성이 우수하였다. 반면, 건조특성은 기공 사이즈가 미세한 직물이 기공사이즈가 큰 직물보다 건조시간이 짧았으며 낮은 커버팩터와 기공 사이즈가 작은 하이멀티사 직물이 중공 복합직물에 비해 건조 특성이 우수하였다. 직물의 기공 사이즈는 공기투과도와 열전도도 특성에 가장 중요한 인자였다. 직물의 큰 기공도는 중공 복합 직물의 기공도와 열전도도에 비선형적인 반비례 상관관계를 나타냈다.

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.

Characteristic Studies of Plasma Treated unidirectional Hildegardia Populifolia Fabric

  • Prasad, C. Venkata;Lee, D.W.;Sudhakara, P.;Jagadeesh, D.;Kim, B.S.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • 제26권1호
    • /
    • pp.54-59
    • /
    • 2013
  • This study deals with effect of plasma treatment on the properties of unidirectional ligno cellulosic fabric Hildegardia Populofolia (HDP) fabric. Thermal stability of the fabric was determined by differential scanning calorimetry (DSC) and Thermo gravimetric analysis (DSC). Morphological properties was analyzed by SEM analysis and found that the surface was rough upon plasma treatment which provides good interfacial adhesion with matrix during composite fabrication. Thermal stability and mechanical properties of the plasma treated fabric slightly increases compare to alkali and untreated fabric. It was observed that tensile properties of the fabric increases upon plasma treatment due to the formation of rough surface. SEM analysis indicates formation of rough surface on plasma treatment which helps in increasing the interfacial interaction between the matrix (hydrophobic) and fabric (hydrophilic).

초다공성 에어로젤 함유 섬유상 복합체를 이용한 신발 안창소재에 관한 연구 (Study on Ultra Porous Aerogel/fiber Composite for Shoe Insole)

  • 오경화;박순자
    • 한국의류학회지
    • /
    • 제33권5호
    • /
    • pp.701-710
    • /
    • 2009
  • This study was conducted to develop excellent insole with good thermal insulation using new materials. We investigated that aerogel/fiber composite can be used as padding materials of shoes by comparing surface shape, moisture regain, water vapor permeability, thermal insulation and compression rate of insole materials tried with nonwoven fabric padding materials and insole sold in market. The results are as follows. Surface shapes were shown that the most appropriate material for sealing aerogel/fiber composite was high density fabric as per size of particle of aerogel. Moisture regain of aerogel/fabric composite was better than nonwoven fabric padding samples. However, when compared to insole sold in market, its moisture regain was worse than those of insole merchandises. Water vapor permeability was higher in material padded with nonwoven fabric than materials padded with aerogel/fiber composite in all three kinds of sealing fabrics. Thermal conductivity of aerogel/fabric composite was lower than nonwoven fabric material regardless of sealing fabrics. Thermal insulation of aerogel/fiber composite was higher than padding material of nonwoven fabric regardless of sealing fabrics. Compression rate of nonwoven (SP1) was higher than that of aerogel/fiber composite (SP2). Compressive elastic recovery rate of SP1 was also higher than that of SP2, which its compression rate and compressive elastic recovery rate were both poor. As the above result, ultra porous aerogel/fiber composite were proved to be material of good thermal insulation with lower thermal conductivity and also compression rate was proved to be low. Therefore, we can say that aerogel/fiber composite have high possibility to be used as insole materials for cold winter shoes requiring good thermal insulation protection.

FDM 방식을 활용한 3D 프린팅 복합직물의 박리강력 측정 연구 (Study on Peel Strength Measurement of 3D Printing Composite Fabric by Using FDM)

  • 한유정;김종준
    • 패션비즈니스
    • /
    • 제23권2호
    • /
    • pp.77-88
    • /
    • 2019
  • One way of appling 3D printing to garments is through the combination of 3D polymer filaments in textile fabrics. it is essential to understand the interface between the polymer and the 3D composite fabric in order to enhance the adhesion strength between the polymers and the peeling strength between the fabric and the polymer. In this study, the adhesion of composite printed specimens using a combination of fabric and polymers for 3D printing was investigated, and also the change in adhesion was investigated after the composite fabric printed with polymers was subjected to constant pressure. Through this process, the aims to help develop and utilize 3D printing textures by providing basic data to enhance durability of 3D printing composite fabrics. The measure of the peeling strength of the composite fabric prepared by printing on a fabric using PLA, TPU, Nylon polymer was obtained as follows; TPU polymer for 3D printing showed significantly higher peel strength than polymers of composite fabric using PLA and Nylon polymer. In the case of TPU polymer, the adhesive was crosslinked because of the reaction between polyurethane and water on the surface of the fabric, thus increasing the adhesion. It could be observed that the adhesion between the polymer and the fiber is determined more by the mechanical effect rather than by its chemical composition. To achieve efficient bonding of the fibers, it is possible to modify the fiber surface mechanically and chemically, and consider the deposition process in terms of temperature, pressure and build density.

압착에 따른 원환체 형상의 두꺼운 직물 복합재 내부의 잔류응력 (Residual Stresses in Thick Fabric Composite Rings with Respect to Compaction)

  • 김종운;김형근;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.139-142
    • /
    • 2004
  • The fabric composite rings for nozzle parts of solid rocket motors should be thick to endure high temperature and pressure of combustion gas. Since the thermal residual stresses developed during manufacturing of the axi-symmetric composite structures increase as the thickness increases and eventually induce failures during storage and operation, the estimation of the residual stresses is indispensable for design and manufacture of the thick composite nozzle parts. In this paper, thick fabric rings made of carbon fabric phenolic composites were fabricated in a hydroclave and in an autoclave using a multi-step pre-compaction process to minimize draping. The residual stresses distributed in the rings were measured by the radial-cut method and it was found that the compaction reduces the residual stresses in the composite ring.

  • PDF

카본블랙/섬유강화 복합재료의 전자파 차폐효과 (Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite)

  • 김진석;한길영;안동규;이상훈;김민수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

탄소/페놀 하이브리드 복합재료의 역학적 특성 및 열적 특성에 관한 연구 (On the Mechanical and Thermal Properties of Carbon/Phenolic Interply Hybrid Composite)

  • 신승준;박종규;강태진;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.29-32
    • /
    • 2002
  • The mechanical and thermal properties of spun carbon fabric/continuous carbon fabric interplay hybrid composite materials have been studied. The properties of the hybrid composites are compared with those of the continuous carbon fabric/phenolic composites and spun carbon fabric /phenolic composites. Through hybridization, tensile strength and flexural strength of hybrid composites were increased by about 17%, and 10%, respectively compared with spun carbon composites. The thermal conductivity of the hybrid composite is lower approximately 4~6% along the direction parallel to the laminar plane than that of the continuous carbon/phenolic composite.

  • PDF

직물 탄소섬유 복합재료 드레이핑 헬멧의 미소변형에 관한 연구 (Microscopic Investigation on the Draped Helmet Structure Made of Carbon Fabric Composite)

  • 장승환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.20-23
    • /
    • 2002
  • In this paper, various tow parameters such as equivalent tow thickness, amplitude of longitudinal tow and tow intervals were investigated and compared with each other by using microscopic observation to find out the exact deformation patterns between both directions of the fabric structure (Longitudinal and Transverse Directions). Specimens for the observation were taken from draped helmet which is made of fabric composite (Five Harness Satin Weave). From the observation results, it was found that there are different deformation pattern between tow directions and effect of geometric condition on the deformation of the fabric materials during draping process was verified.

  • PDF

중공 복합사 직물의 기공도 특성이 고감성 의류용 직물의 쾌적특성에 미치는 영향 (Effect of Porosity Characteristics of Hollow Composite Yarns to the Comfort Property of the Fabrics for the High Emotional Garment)

  • 김현아;김영수;김승진
    • 한국염색가공학회지
    • /
    • 제26권3호
    • /
    • pp.218-229
    • /
    • 2014
  • The wearing comfort of garment is governed by two kinds of characteristics such as moisture and thermal transport properties and mechanical properties of fabrics. The porosity influenced by yarn and fabric structural parameters is known as main factor for wearing comfort of garment related to the moisture and thermal transport properties. This study investigated effect of porosity of composite yarns to the moisture and thermal comfort properties of composite fabrics made of hollow composite DTY and ATY yarns. The theoretical porosity and pore size were inversely proportional to cover factor of fabric, but cover factor was not correlated with experimental pore size. The wicking property of hydrophobic PET filament fabric showed inferior result irrespective of porosity, pore size and cover factor. The drying rate was superior at composite fabrics with high pore size and low cover factor, and pore size was dominant factor for drying property. On the other hand, thermal conductivity of composite fabric was mainly influenced by cover factor and not influenced by porosity. Air permeability was influenced by both porosity and cover factor and was highly increased with increasing porosity and decreasing fabric cover factor.