• Title/Summary/Keyword: FW-H(Ffowcs Williams - Hawkings)

Search Result 37, Processing Time 0.027 seconds

A Prediction of Airflow-Induced Noise in DVD Drive using Acoustic Analogy (음향상사이론을 이용한 DVD Drive 내에서의 유동소음 예측)

  • Yoo, Seung-Won;Lee, Jong-Soo;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.502-507
    • /
    • 2000
  • This paper presents the numerical prediction of airflow-induced sound in DVD drives. Computational fluid dynamics (CFD) is first conducted to evaluate flow field characteristics due to the high-speed disk rotation, and to support the acoustic analysis. The acoustic analogy based on Ffowcs Williams-Hawkings (FW-H) equation is adopted to predict aeroacoustic noise patterns. The integral solution for quadrupole volume source is included to identify the turbulence noise generated inside the DVD tray. Near-field noise is strongly affected by the flow field characteristic, which is caused by the complex shape of the tray. For a mid-field, the quadrupole noise play as a counterpart of thickness noise or loading noise, resulting in a different pattern compared with those in the near field.

  • PDF

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface를 이용한 Fan 소음 해석)

  • Park Y.-M.;Lee S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.763-766
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surface on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface 변화에 따른 송풍기 소음의 BEM 해석)

  • 박용민;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.772-777
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surfaces on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

Prediction of Thickness and Loading Noise from Aircraft Propeller (항공기용 프로펠러에서의 두께 및 하중소음 예측)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.39-45
    • /
    • 2005
  • The aim of this research is to predict the thickness and loading noise of the round-tip shaped Hartzell propeller currently used in the general aviation aircraft. Before implementing the noise analysis, the pressure distribution on the propeller was obtained by using the free wake panel method and unsteady Bernoulli's equation. The noise signal at observer position can be obtained by using the FW-H equation. The noise prediction results for the propeller indicates that the thickness noise has s symmetric directivity pattern with respect to the tip path plane, while the noise due to loading shows higher noise directivity toward downstream than the upstream direction from the rotor plane. The loading noise is dominant rather than the thickness noise in normal operating condition.

Development of Wind Noise Analysis Procedure and Its Verification Using CFD Tool around an OSRVM (CFD를 이용한 OSRVM 주변의 공력소음 해석과정 개발 및 검증)

  • Park, Hyun-Ho;Han, Hyun-Wook;Kim, Moon-Sang;Ha, Jong-Paek;Kim, Yong-Nyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.92-102
    • /
    • 2012
  • The process of the wind noise analysis around an OSRVM is developed and is verified by simulating unsteady flow field past a generic OSRVM mounted on the flat plate at the Reynolds number of $Re_D=5.2{\times}10^5$ based on the mirror diameter. The transient flow field past a generic OSRVM is simulated with various turbulence models, namely DES-SA, LES Constant SGS, and LES Dynamic SGS. The sound radiation is predicted using the Ffowcs- Williams and Hawkings analogy. For the present simulation, the 6.35million cells are generated. Time averaged pressure coefficients at 34 locations on the surface of the generic OSRVM are compared with the available experimental data. Also, 12 Sound Pressure Levels located on the surrounding mirror are compared with the available experimental data. Both of them show good agreements with experimental data.

Prediction of Aerodynamic noise of Pantograph on a high-speed train using the Acoustic Analogy (음향근사기법을 이용한 고속철도 판토그래프의 공력소음 예측)

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jeung-Tae;Kim, Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.150-157
    • /
    • 2011
  • Nowadays, high speed train has settled down as a fast and convenient environment-friendly transportation and it's need is gradually increasing. However increased train speed leads to increased aerodynamic noise, which causes critically affects comfortability of passengers. Especially, the pantograph of high speed train is protruded out of train body, which is the main factor for increased aerodynamic noise. Since aerodynamic noise caused pantograph should be measured in high speed, it is difficult to measure it and to analysis aerodynamic noise characteristics due to the various types of pantograph. In this research, aerodynamic noise of pantograph is predicted by CFD (Computational Fluid Dynamic) and FW-H (Ffowcs Williams-Hawkings) equation. Also, Wind tunnel test results and numerical simulation results were compared. As a result, Simulation results predicting sound pressure level is very similar with wind tunnel test result. This research will draw major factor in aerodynamic noise of pantograph and will be utilized for predict sound pressure level of pantograph.

  • PDF

A Basic Study on the Aero-acoustic Noise Characteristics around a Circular Cylinder using the Large Eddy Simulation (대와류모사법을 이용한 원주 주위의 공력소음 특성에 관한 기초연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.5-11
    • /
    • 2010
  • As a basic study of the aero-acoustic noise, Large eddy simulations were carried out for a fixed circular cylinder at Renolds number (Re=$9.0\times10^4$) using commercial CFD code, FLUENT. The subgrid-scale turbulent viscosity was modeled by Smagorinsky-Lilly model adapted to structured meshes. The results of analysis showed that time-averaged value, $\bar{C}_D$ is approximately 1.47 which is considerably adjacent with the experimentally measured value of 1.32 in comparison to the values performed by previous researchers. It is observed that there are the very small acoustic pressure fluctuation with the same frequency of the Karman vortex street.

Flow-field Analysis and Noise Prediction of Centrifugal Compressor (원심압축기 유동해석 및 소음예측에 관한 연구)

  • 선효성;신인환;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1005-1009
    • /
    • 2002
  • The objective of this research is to suggest the noise prediction method of the centrifugal compressor. It is focused on the Blade Passing Frequency (BPF) component which is regarded as the main part of the rotating impeller noise. Euler solver is used to simulate the flow-field of the centrifugal compressor and time-dependent pressure data are calculated to perform the near-field noise prediction by Ffowcs Williams-Hawkings (FW-H) formulation. Indirect Boundary Element Method (IBEM) is applied to consider the noise propagation effect. Pressure fluctuations of the inlet and the outlet in the centrifugal compressor impeller are presented and Sound Pressure Level (SPL) prediction results are compared with the experimental data.

  • PDF

The effects of noise reduction by the change of penhead shape in pantograph (판토그래프 펜헤드 형상 변화에 따른 소음저감효과 분석)

  • Han, Jae Hyun;Kim, Tae Min;Kim, Jeung Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.447-453
    • /
    • 2012
  • Nowadays, high speed train has settled down as a fast and convenient environment-friendly transportation and it's need is gradually increasing. However increased train speed leads to increased aerodynamic noise, which causes critically affects comfortability of passengers. Especially, the pantograph of high speed train is protruded out of train body, which is the main factor for increased aerodynamic noise. In this research, to reduce aerodynamic noise pantograph, panhead's shape changed to aerodynamical shape. aerodynamic noise of pantograph is predicted by CFD (Computational Fluid Dynamic) and FW-H (Ffowcs Williams-Hawkings) equation. Also, the sound pressure level of aerodynamic noise of base and modified models are predicted. And the reduction effects of the sound pressure level is analyzed.

  • PDF

Acoustic Analysis of Plenum Fan using Kirchhoff-BEM (Kirchhoff-BEM 을 이용한 Plenum Fan 소음해석)

  • Song, W.-S.;Jang, G. J.;Lee, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.89-93
    • /
    • 2004
  • To numerically construct the sound fields by a plenum fan mostly found in Air-Handling Unit (AHU), the Kirchhoff-BEM approach was applied to the near-field data of a turbo fan. The scattering effects were found to be significant by the plenum box structure for high-frequency components of source. The directivity petterns and sound pressure levels were also dependent upon the helmholts number which must be considered of the design stage for sound reduction program.

  • PDF