• Title/Summary/Keyword: FVMQ

Search Result 3, Processing Time 0.017 seconds

The Study of Characteristics on EPDM, NBR, FKM, VMQ and FVMQ for Sealing Applications to Lithium Ion Battery (리튬 이온 전지 씰링에의 응용을 위한 EPDM, NBR, FKM, VMQ 및 FVMQ 특성연구)

  • Seo, Kwan-Ho;Cho, Kwang-Soo;Yun, In-Sub;Choi, Woo-Hyuk;Hur, Byung-Ki;Kang, Dong-Gug
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.212-216
    • /
    • 2010
  • The materials of the lithium ion battery gasket require chemical resistance to the electrolyte, electrical insulating, compression set, anti-contamination and heat resistance. To estimate suitability for rubber which has better performance to compression set than PFA, each compound were made with various rubbers, such as EPDM, NBR, FKM, FVMQ, VMQ and we checked the characteristics of each compound. Samples from each compound was deposited in Propylene Carbonate and tested for changing of Hardness and Volume during 1,000 hr with $80^{\circ}C$. EPDM and VMQ showed good performance to chemical resistance to the electrolyte, and also we could get the values over $10^{10}{\Omega}cm$ on volume resistance basis in electrical insulating. EPDM and VMQ were judged as the most suitable material.

The Effect of Fumed Silica Loading on the Thermal Stability of Fluorosilicone Composites

  • Muhammet Iz;Jinhyok Lee;Myungchan Choi;Yumi Yun;Hyunmin Kang;Jungwan Kim;Jongwoo Bae
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.165-174
    • /
    • 2022
  • The effect of fumed silica loading on the thermal stability and mechanical properties of fluorosilicone (FVMQ) rubber was investigated. The distribution of fumed silica inside FVMQ was characterized using scanning electron microscopy, and the thermal stability of composites was evaluated using thermogravimetric analysis and by the changes in mechanical performance during thermo-oxidative aging. The function mechanism of fumed silica was studied by Fourier transform infrared spectroscopy. The results show that with increasing silica content, the crosslink density of composites, the modulus at 100%, and tensile strength also increased, whereas the elongation at break decreased. Furthermore, increasing the silica content of composites increased the initial decomposition temperature (Td) and residual weight of the composite after exposure to nitrogen. In addition, the thermal oxidative aging experiment demonstrated improved aging resistance of the FVMQ composites, including lower change in tensile strength, elongation at break, and modulus at 100%.

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.