• Title/Summary/Keyword: FUZZY-based control

Search Result 1,845, Processing Time 0.127 seconds

A Study on Design of Neuro- Fuzzy Controller for Attitude Control of Helicopter (헬리콥터 자세제어를 위한 뉴로 퍼지 제어기의 설계에 관한 연구)

  • Choi, Yong-Sun;Lim, Tae-Woo;Jang, Gung-Won;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2283-2285
    • /
    • 2001
  • This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.

  • PDF

Fuzzy Rules Optimizing by Neural Network-based Adaptive Fuzzy Control

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.2-96
    • /
    • 2001
  • This paper presents a control method for the experimental mobile vehicle. By merging the advantages of neural network, adaptive and fuzzy control, neural network-based adaptive fuzzy control is proposed. It can deal with a large amount of training data by neural network, from these data producing more accurate fuzzy rules by adaptive control, and then controlling the object by fuzzy control. This is not the simple combination of the three methods, but merging them into one control system Experiments and some future considerations are given.

  • PDF

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF

Fuzzy Speed Regulator based on a Fuzzy Acceleration Observer for Vector Control of Permanent Magnet Synchronous Motors (영구자석 동기전동기의 벡터 제어를 위한 퍼지 각가속도 관측기 기반의 퍼지 속도제어기)

  • Jung, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.330-337
    • /
    • 2011
  • This paper presents a new fuzzy speed controller based on a fuzzy angular acceleration observer to realize a robust speed control of permanent magnet synchronous motors(PMSM). The proposed speed controller needs the information of the angular acceleration, thus the first-order fuzzy acceleration observer is designed. The LMI existence condition is given for the proposed fuzzy speed controller, and the gain matrices of the controller are calculated. It is verified that the augmented control system consisting of the fuzzy speed controller and the fuzzy acceleration observer is mathematically stable. To validate the effectiveness of the proposed acceleration observer-based fuzzy speed controller, the simulation and experimental results are shown under motor parameter variations. It is definitely proven that the proposed control scheme can precisely track the speed of a permanent magnet synchronous motor.

Design of Adaptive Fuzzy Control for High Performance of PMSM Drive (PMSM 드라이브의 고성능 제어를 위한 적응 퍼지제어기의 설계)

  • 정동화;이홍균;이정철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.107-113
    • /
    • 2004
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

Sliding Mode Controller Design Based On The Fuzzy Observer For Uncertain Nonlinear System (불확실한 비선형 시스템의 퍼지 관측기 기반의 슬라이딩 모드 제어기 설계)

  • 서호준;박장현;허성희;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.284-284
    • /
    • 2000
  • In adaptive fuzzy control systems. fuzzy systems are used to approximate the unknown plant nonlinearities. Until now. most of the papers in the field of controller design for nonlinear system using fuzzy systems considers the affine system with fixed grid-rule structure based on system state availability. This paper considers observer-based nonlinear controller and dynamic fuzzy rule structure. Adaptive laws for fuzzy parameters for state observer and fuzzy rule structure are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

Optimal Control of Induction Motor Using Immune Algorithm Based Fuzzy Neural Network

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1296-1301
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy -neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

Effects of multiple MR dampers controlled by fuzzy-based strategies on structural vibration reduction

  • Wilson, Claudia Mara Dias
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.349-363
    • /
    • 2012
  • Fuzzy logic based control has recently been proposed for regulating the properties of magnetorheological (MR) dampers in an effort to reduce vibrations of structures subjected to seismic excitations. So far, most studies showing the effectiveness of these algorithms have focused on the use of a single MR damper. Because multiple dampers would be needed in practical applications, this study aims to evaluate the effects of multiple individually tuned fuzzy-controlled MR dampers in reducing responses of a multi-degree-of-freedom structure subjected to seismic motions. Two different fuzzy-control algorithms are considered, a traditional controller where all parameters are kept constant, and a gain-scheduling control strategy. Different damper placement configurations are also considered, as are different numbers of MR dampers. To determine the robustness of the fuzzy controllers developed to changes in ground excitation, the structure selected is subjected to different earthquake records. Responses analyzed include peak and root mean square displacements, accelerations, and interstory drifts. Results obtained with the fuzzy-based control schemes are compared to passive control strategies.

Development of Fuzzy-Statistical Control Chart for Processing Uncertain Process Information (불명확한 공정정보 처리를 위한 퍼지-통계적 관리도의 개발)

  • 김경환;하성도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.75-80
    • /
    • 1998
  • Process information is known to have the continuous distribution in many manufacturing processes. Generalized p-chart has been developed for controlling processes by classifying the information characteristics into several groups. But it is improper to describe continuous processes with the classified process informal ion, which is based on the classical set concept. Fuzzy control chart, has been developed for the control of linguistic data, but it is also based on the dichotomous notion of classical set theory. In this paper, fuzzy sampling method is studied in order to process the uncertain data properly. The method is incorporated with the fuzzy control chart. Statistical characteristics of the fuzzy representative value are utilized to device the fuzzy-statistical control chart. The fuzzy-statistical control chart is compared with the generalized p-chart and both the sensitivity to the process information distribution change pared robustiness against the noise on the process information of the fuzzy-statistical control chart are shown to be superior.

  • PDF

Development of Quality Information Control Technique using Fuzzy Theory (퍼지이론을 이용한 품질 정보 관리기법 개발에 관한 연구)

  • 김경환;하성도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.524-528
    • /
    • 1996
  • Quality information is known to have the characteristic of continuous distribution in many manufacturing processes. It is difficult to describe the process condition by classifying the distribution into discrete ranges which is based on the set concept. Fuzzy control chart has been developed for the control of linguistic data but it still utilizes the dichotomous notion of classical set theory. In this paper, the fuzzy sampling method is studied in order to manage the ambiguous data properly and incorporated for generating fuzzy control chart. The method is based on the fuzzy set concept and considered to be appropriate for the realization of a complete fuzzy control chart. The fuzzy control chart was compared with the conventional generalized p-chart in the sensitivity for quality distribution and robustiness against the noise. The fuzzy control chart with the fuzzy sampling method showed better characteristics.

  • PDF