• Title/Summary/Keyword: FUNWAVE-TVD 파랑모형

Search Result 2, Processing Time 0.014 seconds

Wave Transformation using Modified FUNWAVE-TVD Numerical Model (수정 FUNWAVE-TVD 수치모형을 이용한 파랑변형)

  • Choi, Young-Kwang;Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.406-418
    • /
    • 2015
  • The present modified FUNWAVE-TVD model, which is a modification to its previous version 2.1, is applied to solitary wave propagation and is tested against the experiments of Vincent and Briggs(1989) and Luth et al.(1994). The eddy viscosity breaking scheme is used for comparison with the existing study in the case of breaking experiment. The symmetry of wave-induced current is maintained when the modified model is employed to Vincent and Briggs(1989) breaking experiment, but the symmetry of wave-induced current in previous model is not maintained. A better agreement with the breaking experimental data is obtained in the modified model using eddy viscosity breaking scheme than the shock capturing breaking scheme using nonlinear shallow water equation. For comparison with the schemes in the model, the fourth order MUSCL-TVD scheme by Erduran et al.(2005) and the third order MUSCL-TVD scheme using minmod limiter is applied, and the numerical solutions of solitary wave are compared.

Comparison of Numerical Solutions by TVD Schemes in Simulations of Irregular Waves Propagating over a Submerged Shoal Using FUNWAVE-TVD Numerical Model (FUNWAVE-TVD 수치모형을 이용한 수중천퇴를 통과하는 불규칙파의 수치모의에서 TVD 기법들에 의한 수치해 비교)

  • Choi, Young-Kwang;Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.143-152
    • /
    • 2018
  • Numerical convergence and stability of TVD schemes have been applied in the FUNWAVE-TVD model were compared. The fourth order accurate MUSCL-TVD scheme using minmod limiter suggested by Yamamoto and Daiguji (1993), the fourth order accurate MUSCL-TVD scheme using van-Leer limiter suggested by Erduran et al. (2005) and the second order accurate MUSCL-TVD scheme using van-Leer limiter in Zhou et al. (2001) were compared. Comparisons of the numerical scheme were conducted with experimental data of Vincent and Briggs irregular wave experiments. In comparison with the fourth order accurate scheme using van-Leer limiter, the fourth order accurate scheme using minmod limiter is less dissipative but required lower CFL condition for stable numerical solution. On the other hand, the scheme using van-Leer limiter required smaller resolution spatial grid due to numerical dissipation, but relatively higher CFL condition can be used compared to the scheme using minmod limiter. In the breaking wave experiments which were conducted using high resolution spatial grid to reduce numerical dissipation, the characteristic of the schemes can be clearly observed. Numerical instabilities and blow-up of the numerical solutions were found in the irregular wave breaking simulation with the scheme using minmod limiter. However, the simulation can be completed with the scheme using van-Leer limiter, but required low CFL condition. Good agreements with the observed data were also observed in the results using van-Leer limiter.