• Title/Summary/Keyword: FTIR spectroscopy

Search Result 508, Processing Time 0.029 seconds

Impact of inhibitors of amino acid, protein, and RNA synthesis on C allocation in the diatom Chaetoceros muellerii: a FTIR approach

  • Giordano, Mario;Norici, Alessandra;Beardall, John
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.161-170
    • /
    • 2017
  • Fourier Transform Infrared (FTIR) spectroscopy was used to study carbon allocation patterns in response to N-starvation in the nearly ubiquitous diatom Chaetoceros muellerii. The role of gene expression, protein synthesis and transamination on the organic composition of cells was tested by using specific inhibitors. The results show that inhibition of key processes in algal metabolism influence the macromolecular composition of cells and and prior cell nutritional state can influence a cell's response to changing nutrient availability. The allocation of C can thus lead to different organic composition depending on the nutritional context, with obvious repercussions for the trophic web. This also shows that C allocation in algal cells is highly flexible and that C (and the energy associated with its allocation) can be variably and rapidly partitioned in algal cells in response to relatively short term perturbations. Furthermore, the data confirm and extend the utility of infrared spectroscopy as a probe of the metabolic state of autotrophic cells.

Shape-Stabilized Phase Change Materials: Preparation and Properties of Frozen Gels from Polypropylene and n-Eicosane for Latent Heat Storage (형태안정성 PCM: 잠열저장을 위한 Polypropylene과 n-Eicosane으로 구성된 고화젤의 제조 및 특성)

  • Son, Tae-Won;Lim, Hak-Sang;Kim, Tae-Hun;Ko, Jae-Wang
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.261-268
    • /
    • 2010
  • Phase change materials based on polypropylene blended with n-eicosane were studied in this paper. In addition, this paper reviews recent studies on the preparation of shape stabilized phase change materials (SSPCM), such as SSPCM from polypropylenes and n-eicosane, their basic properties and possible applications to latent heat storage. The preparation methods used were the melting method and absorption methods. Shape stabilized PCM(SSPCM) prepared for DSC, WAXD, FTIR spectroscopy, ARES, results of the analysis of shape stability heat capacity to improve were identified.

Effects of Organosilicate Structure on Melt Intercalation of Thermoplastic Polymers (유기화제 구조가 열가소성 나노복합체의 제조에 미치는 영향)

  • 어태식;김성수;송기국;김준경
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.794-801
    • /
    • 2000
  • The effect of chain length and packing density of intercalated surfactants, annealing temperature, and annealing time on static melt intercalation of thermoplastic polymers was examined using x-ray and FTIR spectroscopy. Although melt intercalation of polymers was not successful when alkyl chains in organosilicates form a lateral monolayer structure, the type and structure of surfactants could not much affect final interlayer distances of most polymer/silicate hybrids. As annealing time increases, interlayer distance in organosilicates increases while the dispersity of the spacing between silicate layers decreases. However, the dispersity of interlayer spacing as well as interlayer distance in organosilicates increase with annealing temperature.

  • PDF

Electron Beam Curing of Hard Coating Resin for In-mold Decoration Foils (In-mold Decoration 포일에 사용되는 경질 코팅 수지의 전자빔 경화)

  • Sim, Hyun-Seog;Yun, Deok-Woo;Kim, Geon-Seok;Lee, Kwang-Hee;Lee, Byung-Cheol
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.141-145
    • /
    • 2011
  • The electron beam (EB) induced curing of a typical resin designed for the hard coating layer of in-mold decoration foils was investigated. The samples were irradiated with different doses of EB and the curing reaction was monitored by Fourier transform infrared (FTIR) spectroscopy. The change in coating properties such as surface hardness and anti-abrasion property was studied as a function of increasing dose. The effect of the addition of nano-particles on the improvement of coating properties was also examined. It was expected that the experimental results could be used for the commercial exploitation of the EB curing system comparable to the ultraviolet (UV) curing system.

Mechanical and microstructural investigations on cement-treated expansive organic subgrade soil

  • Nazerke Sagidullina;Jong Kim;Alfrendo Satyanaga;Taeseo Ku;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.353-366
    • /
    • 2024
  • Organic soils pose significant challenges in geotechnical engineering due to their high compressibility and low stability, which can result in issues like differential settlement, rutting, and pavement deformation. This study explores effective methods for stabilizing organic soils. Rather than conventional ordinary Portland cement (OPC), the focus is on using environmentally friendly calcium sulfoaluminate (CSA) cement, known for its rapid setting, high early strength development, and environmental benefits. Mechanical behavior is analyzed through 1-D free swell, unconfined compressive strength (UCS), and bender element (BE) tests. Microstructural analyses, including Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), characterize the soil mixed with CSA cement. Experimental results demonstrate improved soil properties with increasing cement dosage and curing periods. A notable strength increase is observed in soil samples with 15% cement content, with UCS doubling after 7 days. This trend aligns with shear wave velocity results from the BE test. SEM and FTIR spectroscopy reveal how CSA cement hydration forms hydrated calcium silicate gel and ettringite, enhancing soil properties. CSA cement is recommended for reinforcing organic subgrade soil due to its eco-friendly nature and rapid strength gain, contributing to improved durability.

Effect of B2O3 Additives on GaN Powder Synthesis from GaOOH (GaOOH로부터 GaN 분말의 합성에 미치는 B2O3의 첨가효과)

  • Song, Changho;Shin, Dongwhee;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.104-111
    • /
    • 2013
  • In this study, GaN powders were synthesized from gallium oxide-hydroxide (GaOOH) through an ammonification process in an $NH_3$ flow with the variation of $B_2O_3$ additives within a temperature range of $300-1050^{\circ}C$. The additive effect of $B_2O_3$ on the hexagonal phase GaN powder synthesis route was examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transformation infrared transmission (FTIR) spectroscopy. With increasing the mol% of $B_2O_3$ additive in the GaOOH precursor powder, the transition temperature and the activation energy for GaN powder formation increased while the GaN synthesis limit-time ($t_c$) shortened. The XPS results showed that Boron compounds of $B_2O_3$ and BN coexisted in the synthesized GaN powders. From the FTIR spectra, we were able to confirm that the GaN powder consisted of an amorphous or cubic phase $B_2O_3$ due to bond formation between B and O and the amorphous phase BN due to B-N bonds. The GaN powder synthesized from GaOOH and $B_2O_3$ mixed powder by an ammonification route through ${\beta}-Ga_2O_3$ intermediate state. During the ammonification process, boron compounds of $B_2O_3$ and BN coated ${\beta}-Ga_2O_3$ and GaN particles limited further nitridation processes.

The effect of acrylamide incorporation on the thermal and physical properties of denture resins

  • Ayaz, Elif Aydogan;Durkan, Rukiye;Bagis, Bora
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.110-117
    • /
    • 2013
  • PURPOSE. Polymethyl methacrylate (PMMA) is the most commonly used denture base material despite typically low in strength. The purpose of this study was to improve the physical properties of the PMMA based denture base resins (QC-20, Dentsply Ltd., Addlestone, UK; Stellon, AD International Ltd, Dentsply, Switzerland; Acron MC; GC Lab Technologies Inc., Alsip, Japan) by copolymerization mechanism. MATERIALS AND METHODS. Control group specimens were prepared according to the manufacturer recommendations. In the copolymer groups; resins were prepared with 5%, 10%, 15% and 20% acrylamide (AAm) (Merck, Hohenbrunn, Germany) content according to the moleculer weight ratio, respectively. Chemical structure was characterized by a Bruker Vertex-70 Fourier transform infrared spectroscopy (FTIR) (Bruker Optics Inc., Ettlingen, Germany). Hardness was determined using an universal hardness tester (Struers Duramin, Struers A/S, Ballerup, Denmark) equipped with a Vickers diamond penetrator. The glass transition temperature ($T_g$) of control and copolymers were evaluated by Perkin Elmer Diamond DSC (Perkin Elmer, Massachusetts,USA). Statistical analyses were carried out using the statistical package SPSS for Windows, version 15.0 (SPSS, Chicago, IL, USA). The results were tested regarding the normality of distribution with the Shapiro Wilk test. Data were analyzed using ANOVA with post-hoc Tukey test (P<.01). RESULTS. The copolymer synthesis was confirmed by FTIR spectroscopy. Glass transition temperature of the copolymer groups were higher than the control groups of the resins. The 10%, 15% and 20% copolymer groups of Stellon presented significantly higher than the control group in terms of hardness. 15% and 20% copolymer groups of Acron MC showed significantly higher hardness values when compared to the control group of the resin. Acrylamide addition did not affect the hardness of the QC-20 resin significantly. CONCLUSION. Within the limitation of this study, it can be concluded that copolymerization of PMMA with AAm increased the hardness value and glass transition temperature of PMMA denture base resins.

Spectroscopic Analysis of Silica Nanoparticles Modified with Silane Coupling Agent (실란 커플링제에 의해 표면이 개질된 실리카 나노입자의 분광학적 분석)

  • Song, Seong-Kyu;Kim, Jung-Hye;Hwang, Ki-Seob;Ha, Ki-Ryong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • In this study, we used 3-(trimethoxysilyl)propylmethacrylate(MPS) silane coupling agent for surface modification of silica nanoparticles. We studied effects of reaction conditions such as solvent pH, MPS hydrolysis time, reaction time, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, on the surface modification reactions of silica nanoparticles. Fourier Transform Infrared Spectroscopy(FTIR), Elemental Analysis(EA) and solid state crosspolarization magic angle spinning(CP/MAS) Nuclear Magnetic Resonance Spectroscopy(NMR) techniques were used to determine the type and the degree of surface modification. We found MPS reacts preferentially with Si-OH groups of the silica nanoparticles as monomeric form at solvent pH = 4.5. But increasing hydrolysis time of MPS from 30 mins to 90 mins, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, we found that MPS reacts preferentially with Si-OH groups of the silica nanoparticles as oligomeric form.

Spectroscopic Analysis on the Michael Addition Reaction between Secondary Amino Group Containing Silica Nanoparticles with (Meth)acrylate Monomers (2차 아미노기를 갖는 실리카 나노입자와 (메타)아크릴레이트 단량체와의 마이클 부가반응에 대한 분광학적 분석)

  • Jeon, Ha-Na;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.668-676
    • /
    • 2012
  • In this study, we modified silica nanoparticles with bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to introduce secondary amino groups on the silica surface. After modification of silica, we investigated effects of different types of (meth)acrylate group containing monomers on the Michael addition reaction to introduce reactive (meth)acrylate groups on the BTMA modified silica surface. We used two kinds of (meth)acrylate monomers, trimethylolpropane ethoxylate triacrylate (TMPET) which has three identical acrylate groups, and 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) which has one acrylate and one methacrylate group. We used fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to understand reactions between NH groups on the silica surface with (meth)acrylate groups of TMPET and AHM monomers. We found almost complete Michael addition reaction between all three acrylate groups of TMPET with NH groups on the BTMA modified silica. But, for the AHM treatment of BTMA modified silica, we found Michael addition reaction occurred only between acrylate groups of AHM and NH groups of silica surface, not between methacrylate groups of AHM and NH groups of BTMA modified silica surface.

Application of FTIR on the study of Natural, Synthetic and Irradiated Diamonds (FTIR을 이용한 천연, 합성, 방사선 처리된 다이아몬드의 분광학적 특성 연구)

  • Kim, Jong-Rang;Shon, Shoo-Hack;Kim, Su-Hun;Lim, Ye-Won;Kim, Jong-Gun;Kim, Jeong-Jin;Jang, Yun-Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.175-180
    • /
    • 2007
  • FTIR technique was applied to delineate spectroscopic characteristics of natural, synthetic and irradiated diamonds. All of the samples studied in this work show the absorption peaks, which are generally observed in diamond as well as the specific one related to N in diamonds. Synthetic diamond is characterized with both the peaks of 1344 and $1128 cm^{-1}$ related to HPHT synthesis and specific $1050 cm^{-1}$ peak only observed in synthetic diamond, which can be used to discriminate natural from synthetic. Type (natural blue diamond: IIb, electron beam Irradiated blue diamond: Type Ia) can be used to discriminate natural from irradiated diamond. The intensity of specific $1450 cm^{-1}$ peak observed only in irradiated diamond is related with irradiation and annealing process.