• Title/Summary/Keyword: FSW Tool

Search Result 66, Processing Time 0.035 seconds

New technology Trends on Friction Stir Welding Based on Milling Process in terms of Tools, Machine and Applied Parts (밀링기반 마찰교반접합 신기술동향: 공구, 장비 및 응용부품)

  • Noh, Joong-Suk;Kim, Ju-Ho;Go, Gun-Ho;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.37-44
    • /
    • 2013
  • Friction stir welding (FSW) is a solid state joining technique that has expanded rapidly since its development in 1991 and has numerous applications in a wide variety of industries. This paper introduces the basic principles of friction stir welding (FSW) and presents a survey of the latest technologies and applications in the field. The basic principles that are discussed include the terminology, tool/workpiece processes, FSW merits and process variants. In particular, the process variants including the rotation speed and traveling speed are discussed, which include the defect-free zone in an oxygen free copper and Al alloy, respectively. Multiple aspects of the FSW machine are developed, including a horizontal 2D FSW machine and a hybrid complex FSW machine. The latest applications are introduced, with an emphasis on the recent advances in the aerospace, automotive, and IT display industries. Finally, the direction for future research and potential applications are examined.

An experiment of optimizing tools for Lap joint with 2tmm Aluminum alloy plate using FSW (2tmm AL-합금재의 겹침이음을 위한 교반용접의 실험적 연구)

  • 장석기;이돈출;김상진;전정일
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.153-160
    • /
    • 2002
  • This paper shows the possibility of performing Lap joint using the friction stir welding and the determination of tool's dimensions for FSW in Milling machine. This research also is reported on obtaining the tensile-shear strength, 9.319 ( kgf/mm$^{2}$) and the energy absorption, 2,682 (kgf-mm) under this experiment. The optimal tool's dimensions and method for Lap joint in 2tmm aluminum alloy plate using FSW is as follows; The diameter of shoulder and pin are 9 $\phi$mm and 3$\phi$mm, the length of pin is 3.6mm. The conditions of shoulder of tool is not pressed into original base metal.

  • PDF

Optimization of FSW of Nano-silica-reinforced ABS T-Joint using a Box-Behnken Design (BBD)

  • Mahyar Motamedi Kouchaksarai ;Yasser Rostamiyan
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • This experimental study investigated friction stir welding (FSW) of the acrylonitrile-butadiene-styrene (ABS) T-joint in the presence of various nano-silica levels. This study aim to handle the drawbacks of the friction stir welding (FSW) of an ABS T-joint with various quantity of nanoparticles and assess the performance of nanoparticles in the welded joint. Moreover, the relationship between the nanoparticle quantity and FSW was analyzed using response surface methodology (RSM) Box-Behnken design. The input parameters were the tool rotation speed (400, 600, 800 rpm), the transverse speed (20, 30, 40 mm/min), and the nano-silica level (0.8, 1.6, 2.4 g). The tensile strength of the prepared specimens was determined by the universal testing machine. Silica nanoparticles were used to improve the mechanical properties (the tensile strength) of ABS and investigate the effect of various FSW parameters on the ABS T-joint. The results of Box-Behnken RSM revealed that sound joints with desired characteristics and efficiency are fabricated at tool rotation speed 755 rpm, transverse speed 20 mm/min, and nano-silica level 2.4 g. The scanning electron microscope (SEM) images revealed the crucial role of silica nanoparticles in reinforcing the ABS T-joint. The SEM images also indicated a decrease in the nanoparticle size by the tool rotation, leading to the filling and improvement of seams formed during FSW of the ABS T-joint.

A Study on the Thermal Behavior of Friction Stir Welding in hi 6061 Alloys (Al 6061합금의 마찰교반접합시 접합부의 열거동에 관한 연구)

  • 방한서;김흥주;고민성;김규훈
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.534-537
    • /
    • 2002
  • In the various industry such as shipbuilding and automobile, etc., Al-alloys are used to reduce weight and improve economical efficiency, and they are mainly utilized in the process of Friction Stir Welding (FSW). A number of studies have been carried out on the metallurgical characteristics of friction stir welding In Al-alloys. However, research on the thermal behavior of FSW by using numerical analysis is not sufficient in the domestic and abroad. In this paper, therefore, numerical simulation was used to find out thermal behaviour of FSW by finite element method. We considered heat source that occurred by friction between tool shoulder including pin and base metal. To confirm the result of simulation, macrostructure is examined and compared after welding. The result of numerical simulation shows that Al-alloy is welded under a melting point of Al around pin by FSW.

Trends of Technology Development of Friction Stir Welding Machine (마찰교반접합장비의 기술개발 동향)

  • Kim, Young-Pyo;Kim, Cheol-Hee;Kim, Young-Gon;Joo, Sung-Min
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • At present, FSW(friction stir welding) process is being considered as an actual way for production of various industrial products. However FSW process involves high temperature and load on the tool during welding. These are make a difference between FSW machine and general machine tools. From this reason, development of FSW machine needs very careful consideration on stiffness of machine structure, spindle and moving axis including machine control system. In this study authors investigate on the trends of technology development of FSW machine in order to share the information for more extension of FSW technology with related researchers and engineers.

An Experimental Study on Lap Joint using FSW with $2mm^t$ Aluminum Alloy Plate ($2mm^t$ 알루미늄합금재의 겹치기이음을 위한 마찰교반용접의 실험적 연구)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.728-735
    • /
    • 2003
  • This paper shows the possibility of performing Lap joint using the friction stir welding with $2mm^t$ aluminum alloy plate and the determination of tool-dimensions for FSW in milling machine. This research also is reported on obtaining the tensile-shear strength, 91.3 (MPa) and the energy absorption, 26.3 (J) for Lap jointed specimen. The optimal tool-dimensions and method for Lap joint using FSW is as follows; each diameter of shoulder and pin is $9\phi(mm) and 3\phi(mm)$, the length of pin is 3.6(mm), Pressing the shoulder of tool into original base metal is not reasonable.

방전 플라즈마 소결 공법을 이용한 FSW-Tool 용 $WC-5Mo_2C-5Co$ 소결체 제조와 기계적 특성 평가

  • Yun, Hui-Jun;Park, Hyeon-Guk;Lee, Seung-Min;Bang, Han-Seo;Bang, Hui-Seon;O, Ik-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.40.2-40.2
    • /
    • 2011
  • 초경합금은 경도가 높은 재료를 말하며 일반적으로는 탄화텅스텐(WC)계 재료를 말한다. 국내 현재 초경합금 동향은 반도체 산업, 내마모성 공구, 절삭공구, 금형 등 많은 분야에 사용되어지고 있다. 또한 최근 들어 FSW (Friction Stir Welding, FSW)기술이 발전함에 따라 접합기술개발이 다양화되면서 FSW Tool의 고성능의 초경 재료가 요구되어지며 장수명의 Tool개발이 되어야 한다. 국내에서는 초경 합금 재료로 사용되어지고 있는 텅스텐 카바이드(WC)와 코발트(Co)를 이용하여 많은 연구가 진행되었다. 본 실험에서는 텅스텐 카바이드와 코발트 및 몰르브덴 카바이드를 혼합하여 소결체를 제조하였다. 실험에 사용된 텅스텐 카바이드는 높은 경도를 가지고 강한 취성을 나타내며, 소결에 어려운 단점이 있다. 이러한 단점을 코발트와 몰리브덴 카바이드를 첨가하여 소결온도를 낮춰주는 역할과 액상 소결시 텅스텐카바이드 입자사이에 침투하여 액상소결에 의한 치밀화가 가능하게 해주며 인성이 향상되어 고인성 재료를 만들 수 있었다. 본 실험에서는 합성과 치밀화가 동시에 진행되는 SPS (Spark Plasma Sintering:SPS) 장비를 이용하여 실험을 진행하였다. 이 방법은 방전플라즈마 소결 공법으로, 기존의 연소법과 열간 가압기술(Hot-press, HIP)을 결합한 방식으로 단 시간, 단일공정으로 치밀한 소결체를 얻을 수 있는 장점이 있다. 본 연구에서는 $WC-5Mo_2C$-5wt%Co 소결체 제조를 위해 원소 분말을 Horizontal ball milling 혼합하였다. 균일하게 혼합된 분말을 흑연다이에 충진하여 펄스전류와 기계적 압력을 동시에 가하여 $WC-5Mo_2C-5Co$ 복합재료를 제조하고 소결체의 밀도, 순도, 상변태, 미세조직 등을 분석 및 평가하였다. SPS공정 조건은 고진공하에서 $1,200^{\circ}C$-60MPa, 펄스비 12:1 조건으로 수행하였으며, 얻어진 $WC-5Mo_2C-5Co$ 소결체의 상대 밀도는 98%이상 이였다. 또한, 결정립 크기는 약 400 nm였으며, 경도는 $2,453kg/mm^2$를 나타내었다.

  • PDF

Optimal Welding Design for FSW Based on Micro Strength by MSP Test (MSP시험의 미세강도에 의한 FSW 최적용접설계)

  • Yang, Sungmo;Kang, HeeYong;Jeong, Byeongho;Yu, Hyosun;Son, Indeok;Choi, Seungjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.425-431
    • /
    • 2016
  • The usage of Friction Stir Welding(FSW) technology has been increasing in order to reduce the weight in automobile industries. Previous studies that investigated on the FSW have focused on the aluminum alloy. In this study, Al6061-T6 alloy plates having 5 mm of thickness were welded under nine different conditions from three tool rotation speeds: 900, 1000 and 1100 rpm, and three feed rates: 270, 300 and 330 mm/min. Specimen size of Micro Shear Punch(MSP) test was $10{\times}10{\times}0.5mm$. The mechanical properties were evaluated by MSP test and Analysis of Variance (ANOVA). The specimens were classified by advancing side(AS), retreating side(RS), and center(C) of width of tool shoulder. The optimal welding condition of FSW based on micro strengh was obtained when the tool rotation speed was 1100 rpm and the feed rate was 300 mm/min. The maximum load measured AS, RS, and C in the weldment was measured 554.7 N, 642.9 N, and 579.2 N, respectively.

2D ANALYTICAL MODEL OF THE FSW WELD ZONE AND FINITE ELEMENT HEAT TRANSFER ANALYSIS

  • S.R, Rajesh;Bang, Han-Sur;Kim, Heung-Ju;Bang, Hee-Seon
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.135-137
    • /
    • 2005
  • The body of the work covers FSW welding of Al6061 and its thermal distribution based on an analytical model for the heat input at the probe/matrix boundary of Al plates and FSW tool due to the effect of combined translation and rotational motion of the tool pin and shoulder. Finally the 2D- finite element heat transfer analysis program has been used to plot the heat distribution at the Friction Stir Welded joint in Al 6061 plate. The work concludes that the heat distribution result obtained from FE analysis has a reasonable agreement with the experimentally measured values.

  • PDF

The Joining Characteristics of Butt Friction Stir Welded C1020/Al6063 (C1020/Al6063 이종 합금의 맞대기 마찰교반접합의 접합특성)

  • Ko, Young-Bong;Choi, Jun-Woong;Cho, Je-Hyoung;Kim, Hyen-Woo;Park, Kyeung-Chae
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.5
    • /
    • pp.240-245
    • /
    • 2009
  • The Friction Stir Welding (FSW) has mainly been used for making butt joints in Al alloys. Development of FSW would expand the number of applications. The FSW is a relatively solid-state joining process. This study possibility of a welding between C1020 and Al6063 by means of FSW has fundamentally clarified. The primary process parameters, such as a rotating speed, rotating direction of tool and off-set of pin periphery from materials interface were optimize, respectively.