• 제목/요약/키워드: FSW

검색결과 168건 처리시간 0.037초

Residual stresses measurement in the butt joint welded metals using FSW and TIG methods

  • Taheri-Behrooz, Fathollah;Aliha, Mohammad R.M.;Maroofi, Mahmood;Hadizadeh, Vahid
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.759-766
    • /
    • 2018
  • Friction Stir Welding (FSW) is a solid-state process, where the objects are joined together without reaching their melting point. It has been shown that this method is a suitable way to join dissimilar aluminium alloys. The current article employed hole drilling technique to measure the residual stress distribution experimentally in different zones of dissimilar aluminium alloys AA6061-T6 and AA7075-T6 Butt welded using FSW. Results are compared with those of similar AA6061-T6 plates joined using a conventional fusion welding method called tungsten inert gas (TIG). Also, the evolution of the residual stresses in the thickness direction was investigated, and it was found that the maximum residual stresses are below the yield strength of the material in the shoulder region. It was also revealed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses. Meanwhile, Vickers micro hardness measurements were performed in the cross-section of the samples. The largest hardness values were observed in the stir zone (SZ) adjacent to the advancing side whereas low hardness values were measured at the HAZ of both alloys and the SZ adjacent to the retreating side.

TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성 (Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding)

  • 방희선;엠 에스 엠조이
    • Journal of Welding and Joining
    • /
    • 제29권5호
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.

Al-Mg-Si계 알루미늄 합금 판재 마찰교반접합부의 결정 방위 분포에 대한 용접후열처리의 영향 (Effect of Post Weld Heat Treatment for Crystal Orientation Distribution on Friction Stir Welds of Al-Mg-Si Series Aluminum Alloy Sheets)

  • 이광진
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.62-67
    • /
    • 2009
  • Friction stir welding (FSW) was carried out for Al-Mg-Si series aluminum alloys which are being used for automotive body structure. Consequently, Post weld heat treatment (PWHT) was applied to the friction stir welds to evaluate the effect of the paint baking process which is one of the automotive fabrication process on friction stir welded zone (FSWZ) in 443K for 1.2Ks. Grain structure and its crystal orientation distribution was measured about both the as welded specimens and the post weld heat treated specimens. An optical microscope (OM) and an field emission scanning electron microscope (FE-SEM) was used for observing the grain structure and measuring its crystal orientation distribution, respectively. Changes on the grain structure and its crystal orientation distribution were not detected. From the present results, it was confirmed that the paint baking process after FSW do not affect on the grain structure and its crystal orientation distribution of FSWZ. The comprehensive investigations will be performed for various automotive aluminum alloys manufactured by different processes, in the future.

전산유체역학을 활용한 마찰교반용접의 해석적 접근에서 표면추적을 위한 알고리즘 연구 (A study on an Interface Tracking Algorithm in Friction Stir Welding based on Computational Fluid Dynamics Analysis)

  • 김수덕;나석주
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.12-16
    • /
    • 2016
  • Friction stir welding(FSW) was studied using commercial tool, FLOW-3D. The purpose of this study is to suggest a method to apply frictional heat in Computational fluid dynamics(CFD) analysis. Cylindrical tool shape was used, and the interface cells between tool surface and workpiece were tracked by its geometrical relations in order to consider the frictional heat in FSW. After tracking the interface cells, average area concept was used to calculate the frictional heat, which is related to interface area. Also three-dimensional heat source and visco-plastic flow were modeled. The frictional heat generation rate calculated numerically from the suggested algorithm was validated with the analytical solution. The numerical solution was well matched with the analytical solution, and the maximum percentage of error was around 3%.

밀링을 이용한 A1합금 용접을 위한 최적공구형상 및 치수개발에 관한 연구 -마찰용접법에 의하여- (A development of optimizing tools for friction stir welding with 2mm aluminum alloy using milling machine)

  • 김인주
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.110-114
    • /
    • 2000
  • This paper shows the possibility of performing the friction stir welding and the development of optimizing tools for FSW with 2mm thick plate of aluminum alloys using milling machine. This research can be reported on achieving above 90% of the tensile strength in 1050 aluminum alloys friction stir welded in the room temperature. This welding process is very simple and does not require filler metal eliminates straightening of the workpiece. It is currently attracting interest from different industries working with aluminum alloys.

  • PDF

마찰용접 된 박판재의 용접부 특성에 대한 실험 비교 (Experimental Comparison of Weld Zone Properties for $2mm^{t}$ Aluminum Alloy Sheets Friction-Stir-Welded using Milling Machine.)

  • 한민수;장석기;이돈출
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1747-1751
    • /
    • 2003
  • The paper shows properties such as vickers hardness, yielding and ultimate stresses for the weld zone of the butt and the lap jointed specimens, and compare maximum loads, stress-strain curves, deformation appearance after guided bending test and fracture appearance for butt and lap jointed specimens. The research in this experiment also shows the weldability of the butt joint specimen is better than that of the lap joint specimen using FSW with $2mm^{t}$ aluminum alloy sheet in milling machine.

  • PDF

AZ31과 AZ91의 마찰교반용접부 결정립 크기 제어 (Control of Grain Size on Friction Stir Welded AZ31 and AZ91)

  • 권기수;이창우;김목순;;김정한
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.328-331
    • /
    • 2007
  • It was carried out to evaluate microstructure and mechanical properties of friction stir welded(FSW) on magnesium alloys. Two types magnesium alloy was used in this work, AZ31 wrought and AZ91 cast magnesium alloy. Microstructure near the weld zone showed general weld structures such as stir zone(SZ), thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ). In the AZ91 alloy, the SZ had a fine grain size and $\beta$ phase particles which were well distributed in matrix. It was characterized to redistribute by partial or full re-solution of the $\beta$ phase which is coarse in base metal during FSW processing. The hardness of the SZ slightly increase than the base metal in AZ31 Mg alloy.

  • PDF

모재의 방향성에 따른 마찰교반용접 판재의 성형성에 관한 실험적 연구 (Experimental Formability Investigation for FSW Sheets with Respect to Base Material's Directional Combination)

  • 김대용;이원오;김준형;;정관수
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.73-79
    • /
    • 2009
  • In order to investigate the formability of friction stir welded(FSW) tailor welded blanks(TWB) with respect to the base material's directional combination, aluminum alloy AA6111-T4 sheets were welded with three different conjoining types: RD-RD, TD-RD and TD-TD. Here, RD and TD represent rolling and transverse directions, respectively. For experimental formability study, three tests with gradual complexity were performed: the simple tension test with various weld line directions for uni-axial elongation, the hemisphere dome stretching test for biaxial stretching and the cylindrical cup deep drawing test. As a result, all three forming tests showed that RD-RD type samples exhibited the best formability, while TD-TD type sheets showed the least formability performance.

후육 고강도 Al 2519합금의 FSW 접합기술 및 접합부 특성(II) (FSW Process Optimization for Al 2519 Alloys and Its Joint Characteristics(II))

  • 김흥주;장웅성;양광하;방한서
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.174-176
    • /
    • 2005
  • On the basis of successful experiences and data from author's past experimental results of friction stir welding on thin aluminum plates, thick aluminum plate of high strength 2000 series has been carried out in this study. For various combination of rotating speed, welding speed and tool (RIWRC38-C) shape, the butt welded specimens has been prepared to check the metallurgical characteristics, hardness distributions and defects. From the results, feasible welding conditions have been obtained as 450 rpm rotating speed and 5 mm/min welding speed. Using these optimum welding parameters, 38.1mm-thickness A2519-T87 plates have been FSWelded in single pass. A good weld surface appearance and defects free weld zone has been observed in X-ray inspection. Softened region has been generated by dissolution of precipitates and coarsened microstructure in the stir zone after FSWeld.

  • PDF