• 제목/요약/키워드: FSI 해석

검색결과 174건 처리시간 0.026초

유체 구조 연계 해석기법을 적용한 터보블로워 공력성능 해석에 관한 수치적 연구 (Numericla Study on the Aerodynamic Performances of the Turbo Blower Using Fluid-Structure Interaction Method)

  • 박태규;정희택;김형범;박준영
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.35-40
    • /
    • 2011
  • The present study aims at investigating the effect of the fluid-structure interaction on the aerodynamic performances in the turbo blower. The design specifications of the reference model driven by 400kW power were given as 7.43kg/s of mass flow rate, 1.66 of pressure ratio with 12000rpm of impeller rotating speed. Numerical simulation has been performed on the three cases based on the tip clearance between the impeller blade and the shroud. The CFX-turbo for flow fields and ANSYS-mechanical for structure domain were applied to solve the present FSI problems inside the turbo blower. Through the numerical results, the performances corrected by the FSI effects were proposed for the more reliable predictions.

원통형 수직 펌프의 공진회피를 위한 접수진동해석 (Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant)

  • 이재환;왕즈텅;아코마링
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

Structural Analysis on the Arm and Floater Structure of a Wave Energy Converter

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.5-11
    • /
    • 2015
  • Ocean waves have huge amounts of energy, even larger than wind or solar, which can be extracted by some mechanical device. This can be done by creating a system of reacting forces, in which two or more bodies move relative to each other, while at least one body interacts with the waves. This moves the floater up and down. The floaters are connected to an arm structure, which are mounted on a fixed hull structure. Hence, the structure of the floater is very important. A static structural analysis with FSI (Fluid-Structure Interaction) analysis is conducted. To achieve the pressure load for the FSI analysis, the floater is simulated on a wave generator using rigid body motion. The structural analysis is done to examine the stresses on the whole system, and four types of flange and floater are optimized. The result shows that the structure of floater with wood support is the safest.

더미 및 실 블레이드 안테나 조류충돌 해석 및 시험 (Bird Strike Analysis and Test Report of Dummy and Real Blade Antenna)

  • 정한의
    • 항공우주시스템공학회지
    • /
    • 제12권5호
    • /
    • pp.24-31
    • /
    • 2018
  • 항공기의 블레이드 안테나에 대해 더미와 실 안테나의 조류충돌 해석과 시험을 수행하였다. 해석에서 조류는 SPH(Smooth Particle Hydrodynamics) 방법을 이용하여 모델링하였으며, 유체-구조 연성해석 (FSI, Fluid-Structure Interaction) 기법으로 조류와 안테나, 기체 체결부의 거동을 시뮬레이션 하였다. 실제 조류를 사용한 시험을 수행하여 안테나와 동체 사이의 체결부 손상 및 이탈여부를 확인하였으며, 항공기 기체의 구조건전성과 해석 및 시험 결과 사이의 상관성이 있음을 입증하였다.

유한요소법에 의한 Corrugated Board의 휨 발란스 해석 (Buckling Analysis of Corrugated Board using Finite Element Method)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • 제28권2호
    • /
    • pp.127-136
    • /
    • 2003
  • The top-to-bottom compression strength of corrugated board box is the most important mode of loading during it's no, and it depends largely on the edgewise compression strength of the corrugated board in the cross-machine direction and to a considerable extent on the flexural stiffness in both principal directions (CD; cross-machine direction, MD; machine direction) of the corrugated board. Corrugated board is a sandwich structure with an orthotropic property. The purpose of this study was to elucidate the principal design parameters for board combination of corrugated board from the viewpoint of bending strength through the finite element analysis [FEA] fur the various corrugated board. In general, the flexural stiffness [FS] in the MD was 2-3 times larger than that in the CD, and the effect of liner for the FS of corrugated board was much bigger than that of corrugating medium. The flexural stiffness index [FSI] was high when the stiffness of liner was in the order of inner, outer, and middle liner in double-wall corrugated board [DW], and the effect of the stiffness arrangement or itself reinforcement of corrugating medium on the FSI was not high. In single-wall corrugated board [SW] with DW. the variation of FSI with itself stiffness reinforcement of liner was much bigger than that with stiffness arrangement of liner. The highest FSI was at the ratio of about 2:1:2 for basis weight distribution of outer, middle, and inner liner if the stiffness of liner and total basis weight of corrugated board were equal in DW Secondarily. basis weight was in the order of inner, outer, and middle liner. However, the variation of FSI with basis weight distribution between liner and corrugating medium was much bigger than that with itself basis weight distribution ratio of liner and corrugating medium respectively in both DW and SW. md the FSI was high as more total basis weight was divided into liner. These phenomena fur board combination of corrugated board based on the FEA were well verified by experimental investigation.