• 제목/요약/키워드: FSI(Fluid-structure interaction analysis)

검색결과 175건 처리시간 0.021초

추력에 따른 동작 유체의 거동에 있어 쉴드 TBM 추진잭의 안정성에 대한 연구 (A Study on the Stability of Shield TBM Thrust Jack in the Behavior of Operating Fluid According to Thrust Force)

  • 이현석;나영민;장현수;석익현;강신현;김훈태;박종규
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.38-45
    • /
    • 2019
  • In this paper, the stability of the tunnel boring machine (TBM), used in tunnel excavation, according to the thrust force of the thrust jack was investigated. The existing hydraulic cylinder analysis method is fluid-structure interaction (FSI) analysis, where all of the flow setting and dynamic characteristics should be considered. Therefore, there is a need for a method to solve this problem simply and quickly. To facilitate this, the theoretical pressure in the hydraulic cylinder was calculated and compared with the analytical and experimental results. In the case of the analysis, the pressure generated inside the cylinder was analyzed statically, considering the operating characteristics of the shield TBM, and the stress and pressure were calculated. This method simplifies the analysis environment and shortens the analysis time compared to the existing analysis method. The obtained theoretical and analytical data were compared with the measured data during actual tunneling, and the analysis and experimental data showed a relative error of approximately 23.89%.

공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석 (Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect)

  • 김동현;김요한;류경중;김동환;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

풍력터빈의 구조특성 평가에 관한 연구-Part1 (A Study on the Evaluation of Structural Properties of Wind Turbine Blade-Part1)

  • 이경수;;;한상을
    • 한국공간구조학회논문집
    • /
    • 제14권4호
    • /
    • pp.47-54
    • /
    • 2014
  • This paper presents the structural model development and verification processes of wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. The wind turbine assembled by blades, rotor, nacelle and tower. The wind blade connected to rotor. To make the whole turbine structural model, the mass and stiffness properties of all parts should be clear and given. However the wind blade, hub, nacelle, rotor and power generating machinery parts have difficulties to define the material properties because of the composite and assembling nature of that. Nowadays to increase the power generating coefficient and cost efficiency, the highly accurate aerodynamic loading evaluating technique should be developed. The Fluid-Structure Interaction (FSI) is the emerging new way to evaluate the aerodynamic force on the rotating wind blade. To perform the FSI analysis, the fluid and structural model which are sharing the associated interface topology have to be provided. In this paper, the structural model of blade development and verifying processes have been explained for Part1. In following Part2 paper, the processes of whole turbine system will be discussing.

충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성 (Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects)

  • 김동현;김유성;김요한;김석수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.167-174
    • /
    • 2008
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성 (Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects)

  • 임함;김동현;김유성;김요한;김석수
    • 한국항공운항학회지
    • /
    • 제17권2호
    • /
    • pp.8-17
    • /
    • 2009
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

가상경계-격자 볼츠만 방법을 이용한 유동장내 나노/마이크로 입자에 작용하는 힘의 해석 (Force Analysis on the Nano/Micro Particle in a Flow using Immersed Boundary-Lattice Boltzmann Method)

  • 조홍주;이세영
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권1호
    • /
    • pp.35-44
    • /
    • 2022
  • Immersed boundary-Lattice Boltzmann Method (IB-LBM) is used for the analysis of flow over the circular cylinder in the concept of fluid-structure interaction analysis (FSI). Recently, IB-LBM has shown the enormous possibility for the application of various biomedical engineering fields, such as the movement of a human body or the behavior of the blood cells and/or particle-based drug delivery system in blood vessels. In order for the numerical analysis of the interaction between fluid and solid object, immersed boundary method and lattice Boltzmann method are coupled to analyze the flow over a cylinder for low Reynolds laminar flow (Re=10, 20, 40 and 100) with Zhu-He boundary condition at the boundary. With the developed IB-LBM, the flow around the cylinder in the uniform flow is analyzed for the laminar flow and the drag and lift coefficients and recirculation length are compared to the previous results.

Dynamic analysis of offshore wind turbines

  • Zhang, Jian-Ping;Wang, Ming-Qiang;Gong, Zhen;Shi, Feng-Feng
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.373-380
    • /
    • 2020
  • For large-scale 5MW offshore wind turbines, the discrete equation of fluid domain and the motion equation of structural domain with geometric nonlinearity were built, the three-dimensional modeling of the blade considering fluid-structure interaction (FSI) was achieved by using Unigraphics (UG) and Geometry modules, and the numerical simulation and the analysis of the vibration characteristics for wind turbine structure under rotating effect were carried out based on ANSYS software. The results indicate that the rotating effect has an apparent effect on displacement and Von Mises stress, and the response and the distribution of displacement and Von Mises stress for the blade in direction of wingspan increase nonlinearly with the equal increase of rotational speeds. Compared with the single blade model, the blade vibration period of the whole machine model is much longer. The structural coupling effect reduces the response peak value of the blade displacement and Von Mises stress, and the increase of rotational speed enhances this coupling effect. The maximum displacement difference between two models decreases first and then increases along wingspan direction, the trend is more visible with the equal increase of rotational speed, and the boundary point with zero displacement difference moves towards the blade root. Furthermore, the Von Mises stress difference increases gradually with the increase of rotational speed and decreases nonlinearly from the blade middle to both sides. The results can provide technical reference for the safe operation and optimal design of offshore wind turbines.

Numerical characterization of real railway overhead cables

  • Sanchez-Rebollo, Cristina;Velez, Enrique;Jimenez-Octavio, Jesus R.
    • Wind and Structures
    • /
    • 제21권1호
    • /
    • pp.105-117
    • /
    • 2015
  • This paper presents a numerical characterization of real railway overhead cables based on computational fluid dynamics (CFD). Complete analysis of the aerodynamic coefficients of this type of cross section yields a more accurate modelling of pressure loads acting on moving cables than provided by current approaches used in design. Thus, the characterization of certain selected commercial cables is carried out in this work for different wind speeds and angles of attack. The aerodynamic lift and drag coefficients are herein determined for two different types of grooved cables, which establish a relevant data set for the railway industry. Finally, the influence of this characterization on the fluid-structure interaction (FSI) is proved, the static behavior of a catenary system is studied by means of the finite element method (FEM) in order to analyze the effect of different wind angles of attack on the stiffness distribution.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

유동점성 및 공탄성 변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가 (Performance Evaluation of Stator-Rotor Cascade System Considering Flow Viscosity and Aeroelastic Deformation Effects)

  • 김동현;김유성
    • 한국항공우주학회지
    • /
    • 제36권1호
    • /
    • pp.72-78
    • /
    • 2008
  • 본 연구에서는 블레이드 구조 변형 효과를 고려하여 스테이터-로터 상호간섭 케스케이드 모델의 성능평가를 위한 유체-구조 연계해석 시스템을 개발하였다. 고정된 스테이터와 회전하는 로터는 상호간섭 영향이 유동해석에 고려되었으며, 레이놀즈-평균화 난류 방정식인 Spalart-Allmaras 모델과 k-ω SST 난류 모델이 압축성 유동박리 효과를 고려한 유동하중을 예측하기 위해 적용되었다. 정적인 유체-구조 연계해석과 수렴율 증진을 효과적으로 수행하기 위하여 큰 인공 감쇠를 가지는 연계 Newmark 시간적분 기법을 적용하였다. 수치실험을 통해 탄성축 위치에 따른 구조변형 효과가 케스케이드 성능에 미치는 영향을 파악하였다. 구조변형 효과가 고려된 경우 일반적인 강체 블레이드 모델에 대한 성능예측 결과와 다소 차이가 유발될 수 있음을 보였으며 공력탄성학적 영향을 고찰하였다.