• Title/Summary/Keyword: FRP waste Boat Regenerating

Search Result 5, Processing Time 0.018 seconds

Developing An Extracting Method of Laminated Glass-Fiber for Waste FRP Boats Regenerating (폐FRP 선박의 재자원화를 위한 유리면포 추출장치 개발)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.50-54
    • /
    • 2008
  • There are several basic classes of recycling methods for FRP boats. The main one is 'Mechanical recycling' which involves shredding and grinding of the scrap FRP in a new product. That is one of the simpler and more technically proven methods. It recently has been reported that FRP can be recycled by separating into layers instead of crushing into powder. Many researchers should be more interested in these mechanical recycling for the eligibility. Nevertheless, because resins is very useful renewable energy, most of waste FRP regenerating methods depend on incineration (reclamation) or thermal recycling (pyrolysis). FRP is made up of laminated glass- fiber (roving cloth layer) which is also very unlikely to break into each layer. If there is an extracting method which is efficient and environment friendly removing glass fiber from waste FRP, it should also solve the another urgent problem. Laminated glass-fiber which is very limited renewable, is a serious barrier to wast FRP boat regenerating. This study is to propose a new extracting method which is efficient and environment friendly waste FRP regenerating system. And it should be applied to renewable energy applications with the waste resins of FRP. Also recycling glass fiber obtained by the separation of the roving layer from waste FRP will be consider to be useful for concrete products or structures.

  • PDF

Developing a Study on the Extracting Method of Laminated Glass Fiber from FRP Boats (폐FRP 선박으로부터 섬유보강재 추출공정 개선 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • There is several ways of recycling methods for waste FRP boats. The main one is mechanical recycling that is one of the simple and technically proven methods. It recently has been reported that FRP can be recycled by separating into laminated glass fiber layers instead of crushing into powder. Even though the mechanical recycling is a good way for the eligibility of laminated glass fiber reinforced material, the system should have another option which can collect resin of FRP. Because the resin is still very useful renewable energy source, that cannot be discarded, But FRP is made up of laminated glass fiber(roving cloth layer) which is fire retardant substances and very hard to break into each layer. Due to the high cost of fossil energy the waste plastics should be regenerated to the source of renewable energy. Laminated glass fiber which is recyclable in a very limited way, is currently a serious barrier to waste FRP boat regenerating. This study is to propose a new extracting method which is efficient and environment friendly FRP waste regenerating system. The recycled glass fiber which is obtained by the separation of the roving layer from FRP waste has been found to be useful for concrete(FRC) products or concrete(FRC) structures as fiber reinforced material. And it can be successively applied to renewable energy applications using the waste resins of FRP residue without laminated glass fiber.

  • PDF

Development of FRP Recycling Process for Regenerating Applications of Fire Resistance Performance of High Strength Concrete (고강도 콘크리트의 내화성능 용도에 따른 FRP재활용 공정 개발)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.207-215
    • /
    • 2015
  • In the last decade, increasing national research fund for recycling the waste FRP (fiber reinforced plastics) ships which has caused environmental problems, improves the technology making concrete-reinforcing fibers out of the waste FRP. Furthermore, the concrete with recycled FRP fiber was tested for the structural performance. Experimental strength tests show that use of recycled FRP powder does not reduce the compressive strength of high strength concrete, and does increase the fire resistance performance of high strength concrete significantly. But, the study in investigating the properties of recycled fiber powder from waste FRP has not been completed because of the absence of the method of separation of mat layer from the waste FRP. This study is to propose a new extracting method of the mat layer from waste FRP, which is the efficient and environment friendly system. and thus it is considered to be the useful recycling method for fire resistance high concrete products or structures.

Developing Advanced Total Recycling Method of FRP Boats (FRP선박의 일괄 재처리 방법의 개선)

  • Lee, Seung Hee;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Since 1990s, the major recycling methods for mechanical recycling of FRP(Fiber Reinforced Plastics)boats has involved shredding and grinding of the scrap FRP in a new recycled product. But still it leads to secondary problem such as air pollution, unacceptable shredding noise level and few limited applications. This study is to propose a newly advanced method which is more efficient and environment friendly waste FRP regenerating system. As extracting FRP layer and making the recycled fiber for recycled-fiber reinforced concrete(RFRC) from waste FRP, the recycling process has some merits in a sense of the recycling energy and the environmental effects. In this study, for those tasks, spectro-chemical differentiation method and coloring water-soluble dye treatment makes the roving layer more distinguishable photophysically. Also that has remarkably reduced safety hazards and energy. Using the mechanical properties of polymers and composite, FRP with the orthotropic and laminated plastic structure has been easily separated in the new extracting system. Also the new method has introduced five kind of separating manuals for the some different compositions of FRP boats. The roving fiber of laminated glass-fiber layer is as good as the polyvinyl fiber which is cost-high commercial fiber to increasing strength of concrete products. The early study has shown the effectiveness of laminated glass-fiber layer which also is chemical-resistant due to the resin coating. These results imply that more efficient and environment friendly recycled glass fiber can be better applied to the fiber reinforced concrete(FRC) substitute and this study also has shown wide concrete applications with RFRC from the waste FRP boat.

Developing a General Recycling Method of FRP Boats (FRP선박의 범용 재활용을 위한 재처리시스템의 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • For several decades, many researchers have been involved in developing recycling methods for FRP boats. There are four basic classes of recycling covered in the literature. Despite of environmental problems(safety hazards), mechanical recycling of FRP boats, which involves shredding and grinding of the scrap FRP, is one of the simpler and more technically proven methods than incineration, reclamation or chemical ones. Because FRP is made up of reinforced fiber glass, it is very difficult to break into pieces. It also leads to secondary problem in recycling process, such as air pollution and unacceptable shredding noise level. Another serious problem of mechanical FRP recycling is very limited reusable applications for the residue. This study is to propose a new and efficient method which is more wide range applications and environment friendly waste FRP regenerating system. New system is added with the cyclone sorting machine for airborne pollutions and modified cutting system for several glass fiber chips sizes. It also has shown the FRP chip fiber-reinforced concrete and fiber-reinforced secondary concrete applications with the waste FRP boat to be more eligible than existing recycling method.

  • PDF