• Title/Summary/Keyword: FRP sheet

Search Result 133, Processing Time 0.022 seconds

Repair and Strengthening Methods for Concrete Structures using Sprayed Fiber Reinforced Polymers - Material Property of Sprayed FRP - (Sprayed FRP 공법에 의한 콘크리트 구조물의 보수.보강법 개발에 관한 연구 - Sprayed FRP를 구성하는 재료특성에 관한 연구 -)

  • Lee, Li-Hyung;Lee, Kang-Seok;Son, Young-Sun;Byeon, In-Hee;Lim, Byung-Ho;Na, Jung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • The main purpose of this study is to develop a Sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing carbon or glass shot fibers and the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the Sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of Sprayed FRP, this study carried out tensile tests of the material specimens which are changed with the combinations of various variables such as the length of shot fiber and mixture ratio of shot fiber and resin. These variables are set to have the material strength equal to one layer of the FRP sheet. As a result, the optimal length of glass and carbon shot fibers were derived into 3.8cm, and the optimal mixture ratio was also deriver into 1:2 from each variable. And also, the thickness of Sprayed FRP to have the strength equal to one layer of FRP sheet was finally calculated.

  • PDF

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.

Comparative Study on Seismic Performance of Masonry Wall Strengthened by FRP Sheet or Steel-Bar Truss System (FRP 시트 및 강봉 트러스 시스템으로 보강된 조적벽의 내진성능 비교 연구)

  • Lee, Hye-Ji;Kim, Sanghee;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, the in-plane and out-of-plane seismic performance of the masonry wall strengthened using the steel bar truss system proposed by Hwang et al. (2021a, 2021b) or using FRP sheets were compared and evaluated. The maximum strength of the masonry wall reinforced with FRP sheets for the in-plane and out-of-plane loading was 71% and 85%, respectively, of that of the non-reinforced masonry wall. Meanwhile, the maximum strength of the masonry wall reinforced with the steel bar truss system was approximately 1.8 times higher than that of the non-reinforced masonry wall. Compared with the FRP sheet method, the steel bar truss system was excellent at improving the maximum load capacity, rigidity, and energy dissipation capacity. However, in the case of a masonry wall reinforced with FRP sheets, the masonry wall was overstrengthened with the FRP sheets covering the entire masonry wall, and it is considered that the overstrengthened specimen experienced sliding failure, resulting in a lower strength than the other specimens. A follow-up study is needed to compare the seismic performance of the specimen involving only a part of the masonry wall reinforced with the FRP sheets and the specimen reinforced using the steel bar truss system.

Utilizing vacuum bagging process to enhance bond strength between FRP sheets and concrete

  • Abdelal, Nisrin R.;Irshidat, Mohammad R.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • This paper investigates the effect of utilizing vacuum bagging process to enhance the bond behavior between fiber reinforced polymer (FRP) composites and concrete substrate. Sixty specimens were prepared and tested using double-shear bond test. The effect of various parameters such as vacuum, fiber type, and FRP sheet length and width on the bond strength were investigated. The experimental results revealed that utilizing vacuum leads to improve the bond behavior between FRP composites and concrete. Both the ultimate bond forces and the maximum displacements were enhanced when applying the vacuum which leads to reduction in the amount of FRP materials needed to achieve the required bond strength compared with the un-vacuumed specimens. The efficiency of the enhancement in bond behavior due to vacuum highly depends on the fiber type; using carbon fiber showed higher enhancement in the bond strength compared to the glass fiber when vacuum was applied. On the contrary, specimens with glass fiber showed higher enhancement in the maximum slippage compared to specimens with carbon fibers. Utilizing vacuum does not affect the debonding failure modes but lead to increase in the amount of attached concrete on the surface of the debonded FRP sheet.

An Experimental Study to Prevent Debdonding Failure of RC Beams Strengthened by Aramid Fiber Sheets (아라미드섬유쉬트로 휨 보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.84-87
    • /
    • 2004
  • Nominal flexural strength of RC members strengthened with FRP sheets is generally based on the tensile strength of composite materials obtained from coupon tests. This method is based on the assumption that bond failure does not occur until the FRP sheet reaches its rupture strength. According to the previous researches, however, bond failure often occurs before the FRP sheet reaches its rupture strength. Some attempts were made to control debonding failure by increasing the bonded length of sheet or wrapping the section around their side of the member(U-wrap). In this study, the flexural failure mechanism of RC beams strengthened with AFRP sheets with different bond lengths is investigated. Their strengthening details to prevent the premature debonding failure are also suggested and its effectiveness is verified.

  • PDF

Delamination Detection of FRP Sheet Reinforced Concrete Using Microstrip Patch Antenna (Microstrip Patch Antenna를 이용한 탄소섬유시트 보강콘크리트의 박리 탐사)

  • Rhim, Hong-Chul;Lee, Hyo-Seok;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.134-141
    • /
    • 2007
  • A series of experimental work has been conducted to evaluate the capability of microstrip patch antenna system in detecting delamination in fiber reinforced Plastic (FRP) sheet reinforced concrete. For that purpose, a prototype microstrip patch antenna was developed with 15 GHz center frequency and 1 GHz bandwidth. For the comparison, a horn antenna with 15 GHz center frequency and 10 GHz bandwidth was used for the measurements of the same specimens. The laboratory sire specimens have the dimensions of 600 mm (length) $\times$ 600 mm (width) $\times$ 50mm (thickness) with a series of delaminations of 300 mm (length) $\times$ 300mm (width) $\times$ 5, 10, 15 mm (thickness). FRP of 1.5 mm thickness and epoxy of 3 mm thickness were placed on the top of artificially created delamination to represent actual FRP reinforced concrete condition. In all cases, the delamination has deen successfully identified. Also, it was shown that imaging results in microstrip patch antenna were improved by signal processing.

Rehabilitation and strengthening of exterior RC beam-column connections using epoxy resin injection and FRP sheet wrapping: Experimental study

  • Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.723-736
    • /
    • 2019
  • The efficacy of a technique for the rehabilitation and strengthening of RC beam-column connections damaged due to cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged region to retrieved back the lost capacity and then strengthening using fiber reinforced polymer (FRP) sheets for capacity enhancement. Three common types of reduced scale RC exterior beam-column connections namely (a) beam-column connection with beam weak in flexure (BWF) (b) beam-column connections with beam weak in shear (BWS) and (c) beam-column connections with column weak in shear (CWS) subjected to reversed cyclic loading were considered for the experimental investigation. The rehabilitated and strengthened specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using FRP sheet significantly enhanced the seismic capacity of the connections.

Experimental Study on Flexural Behavior of RC Slab Strengthened by FRP Sheet and GSP (FRP 쉬트 및 GSP로 보강된 RC 슬래브의 휨거동에 관한 실험적 연구)

  • Ahn, Ki-Man;Kim, Kwang-Soo;Kim, Tae-Wan;Park, Sun-Kyu;Lee, Young-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.185-188
    • /
    • 2006
  • Recently, an improved capacity for RC bridges is required by their deterioration or necessary to carry traffic increase. Strengthening is known as a better way to improve capacity of bridges than reconstructing. Fiber Reinforced Plastics (FRP) is introduced as one of the best strengthening structures in this paper. It is also known as an economical improvement. Therefore, FRP sheet and Glass Fiber-Steel Composite Plate (GSP) in this research were used in strengthening slab of RC bridges. Experimental data from the strengthening will be helpful to better understand the slab behavior and an effect of the strengthening.

  • PDF

An Experimental Study on Strengthening Performance of RC Slab used of Surface Bonded Method of GSP and CFRP Sheet (GSP와 CFRP 쉬트의 표면부착공법을 이용한 RC 슬래브의 보강성능 평가에 관한 실험적 연구)

  • Ahn, Ki-Man;Kim, Kwang-Soo;Park, Sun-Kyu;Lee, Young-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.95-102
    • /
    • 2007
  • Recently, an improved capacity for RC bridges is required by their deterioration or necessary to carry traffic increase. Strengthening is known as a better way to improve capacity of bridges than reconstructing in terms of economy. The surface bonded method, which is normally used with FRP material, has some advantages related to conveninent application and time-save among other strengthening methods. FRP material is light and has high tensile strength compared to steel. Therefore, this paper presents how structural capacity strengthed with CFRP sheet and Glass fiber-Steel Plate (GSP) is improved.

Predicting and analysis of interfacial stress distribution in RC beams strengthened with composite sheet using artificial neural network

  • Bensattalah Aissa;Benferhat Rabia;Hassaine Daouadji Tahar
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.517-527
    • /
    • 2023
  • The severe deterioration of structures has led to extensive research on the development of structural repair techniques using composite materials. Consequently, previous researchers have devised various analytical methods to predict the interface performance of bonded repairs. However, these analytical solutions are highly complex mathematically and necessitate numerous calculations with a large number of iterations to obtain the output parameters. In this paper, an artificial neural network prediction models is used to calculate the interfacial stress distribution in RC beams strengthened with FRP sheet. The R2value for the training data is evaluated as 0.99, and for the testing data, it is 0.92. Closed-form solutions are derived for RC beams strengthened with composite sheets simply supported at both ends and verified through direct comparisons with existing results. A comparative study of peak interfacial shear and normal stresses with the literature gives the usefulness and effectiveness of ANN proposed. A parametrical study is carried out to show the effects of some design variables, e.g., thickness of adhesive layer and FRP sheet.