• Title/Summary/Keyword: FRP sheet

Search Result 133, Processing Time 0.022 seconds

Flexural Strengthening with Multi-Layer GFRP Sheets on Full-Scale RC Beams (유리섬유쉬트에 의한 실물모형 RC보의 보강매수별 휨 보강효과)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.177-180
    • /
    • 2005
  • The specified tensile strength provided by the manufacturer is determined on the basis of the reliable lower limit ($X-3{\sigma}$ : X=average tensile strength, $\sigma$=standard deviation) obtained from the material test results. Most of these data, however, are based on the test results of 1 layer of FRP sheet. Also, the partial strength reduction factor for strengthening RC members with FRP is based on the small-scale model tests. But, the failure mechanisms of small-scale model tests are reported to be different from those of the full-scale tests. This paper present the test results of full-scale RC beams strengthened with multi-layer GFRP sheets up to 3 layer as well as the material tests. From the material tests, it was observed that the average tensile strengths of GFRP sheets are decreased as the number of layer are increased. Also the premature debonding failure of RC beams strengthened with multi-layer GFRP sheets are observed in inverse proportion to the number of GFRP sheets

  • PDF

Evaluation of Bending Characteristics for Carbon FRP Structure having Circle Cross-section (원통 CFRP 구조재의 굽힘 특성 평가)

  • Kim, Jung-Ho;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.202-206
    • /
    • 2011
  • Works on the strength and stiffness in the structural members are carried out widely with various material and cross-sections with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. So, Light weight of member structures is necessary for the high performance and various functions. In this study, the CFRP flat and circular member was manufactured by CFRP prepreg sheet in autoclave. Carbon FRP is an anisotropy material whose mechanical properties change with its fiber orientation angle, so this study apply to the effects of the fiber orientation angle on the bending characteristics of the member. Each CFRP flat and circle are compared by strength and stiffness.

Flexural Performance of Slabs Strengthened by Fiber-Reinforced Polymer Sheet with Hydrophilic Epoxy (친수성 에폭시를 사용하여 FRP 시트로 보강된 슬래브의 휨거동 평가)

  • Ju, Hyunjin;Han, Sun-Jin;Cho, Hae-Chang;Lee, Deuck Hang;Kim, Kang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, the hydrophilic chemical grout using silanol (HCGS) was introduced to overcome the limitations of conventional epoxy resin which have been used for strengthening reinforced concrete (RC) structures. Then, flexural tests on the RC slabs strengthened by FRP sheets were conducted. Three slab specimens were tested in this study; a control specimen with no strengthening, and two specimens strengthened by a typical epoxy resin or HCGS, respectively, as a binder between the slabs and the FRP sheets. In addition, an analytical model was developed to evaluate the flexural behavior of strengthened slab members, considering the horizontal shear force at the interface between concrete slabs and FRP sheets. The analysis results obtained from the proposed model indicated that the strengthened specimens showed fully composite behavior before their flexural failure. Especially, the specimen strengthened by HCGS, which can overcome the limitations of conventional epoxy resin, showed a similar flexural performance with that strengthened by a conventional epoxy resin.

Development and Applicability Evaluation of High Performance Poly-urea for RC Construction Reinforcement (RC 구조물 보강을 위한 고성능 폴리우레아의 개발 및 적용성 평가)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Choi, Hong-Shick;Heo, Gweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.169-176
    • /
    • 2010
  • Generally, poly-urea is widely used as waterproof coating material due to its superior adhesiveness, elongation capacity, and permeability resistance. In addition, it can be quickly and easily applied on structure surfaces using spray application. Since it hardens in about 30 seconds after application, its construction efficiency is very high and its usage as a special functional material is also excellent. However, currently, poly-urea is mostly used as waterproof coating material and the researches on its usage as a retrofitting material is lacking at best. Therefore, basic studies on the use of poly-urea as a general structural retrofitting material are needed urgently. The objective of this study is to develop most optimum poly-urea composition for structure retrofitting purpose. Moreover, the structural strengthening capacity of the developed poly-urea is evaluated through flexural capacity experiments on RC beams and RC slabs. From the results of the flexural test of poly-urea strengthened RC beam and slab specimens, the poly-urea and concrete specimen showed monolithic behavior where ductility and ultimate strength of the poly-urea strengthened specimen showed slight increase. However, the doubly reinforced specimens with FRP sheet and poly-urea showed lower capacity than that of the specimen reinforced only with FRP sheet.

Installation and Safety Evaluation of Tracking-type Floating PV Generation Structure (추적식 수상 태양광발전 구조물의 시공 및 안전성 평가)

  • Jang, Min-Jun;Kim, Sun-Hee;Lee, Young-Geun;Woo, Sang-Byock;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Pultruded glass fiber reinforced polymeric plastic (PFRP) and FRP member manufactured by sheet molding compound (SMC) have superior mechanical and physical properties compared with those of conventional structural materials. Since FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of floating-type photovoltaic (PV) power generation system. In this paper, advanced floating PV generation system made of PFRP and SMC is designed. In the design, it includes tracking solar altitude by tilting photovoltaic arrays and tracking solar azimuth by spinning structures. Moreover, the results of the finite element analysis (FEA) are presented to confirm stability of entire structure under the external loads. Additionally, installation procedure and mooring systems in the Hap-Cheon Dam are discussed and the measurement of strain under the actual circumstances is conducted for assuring stability of actually installed structures. Finally, by comparison with allowable stress, appropriate safety of structure is confirmed to operate the system.

Improvement and Evaluation of Seismic Performance for Reinforced Concrete Beam-Column Joints Using High Performance Embedded FRP (고성능 FRP를 활용한 철근콘크리트 보-기둥 접합부의 내진 성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kang, Hyun-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.385-392
    • /
    • 2011
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (steel plate, carbon fiber sheet, and embedded carbon fiber rod) in existing reinforced concrete buildings. Six specimens of retrofitted beam-column joints are constructed using various retrofitting materials and tested for their retrofit performances. Specimens designed by retrofitting the beam-column joint regions (LBCJ series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity due to the effect of crack control at the time of initial loading and confinement from retrofitting materials during testing. Specimens of LBCJ series, designed by the retrofitting of FRP in reinforecd beam-column joint regions increased its maximum load carrying capacity by 26~50% and its energy dissipation capacity by 13.0~14.4% when compared to standard specimen of LBCJC with a displacement ductility of 4.

A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by CFS or CFRP (CFS 및 CFRP로 전단보강된 RC보의 전단보강효과 비교연구)

  • 심종성;김규선;황성욱;김정구;이석무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.697-702
    • /
    • 1997
  • This study presents test results of RC beams strengthened by carbon fiber sheet (CFS) or carbon fiber reinforced plastics (CFRP) for increasing shear resistance. Fifteen specimens were tested, and the test was performed with different parameters including the type of strengthening materials (CFS, CFRP), shear-strengthening methods (wing type, jacket type, strip type), strip-spacing, strengthening direction of FRP. The results show that shear-damaged RC beams strengthened by either CFS or CFRP have more improved the shear capacity.

  • PDF

Shear behavior of RC beams externally strengthened and anchored with CFRP composites

  • Al-Rousan, Rajai Z.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.447-456
    • /
    • 2017
  • The primary objective of this paper is to study the effectiveness of anchorage on the performance of shear deficient beams externally strengthened with CFRP composites. The overall behavior of the tested beams loaded up to failure, the onset of the cracking, and crack development with increased load and ductility were described. The use of CFRP composites is an effective technique to enhance the shear capacity of RC beams by using CFRP strips anchored into the tension side and from the top by 15-34% based on the investigated variables. Bonded anchorage of CFRP strips with width of 0.1h-0.3h to the beam resulted in a decrease in average interface bond stress and an increase in the effective strain of the FRP sheet at failure, which resulted in a higher shear capacity as compared with that of the U-wrapped beams without anchorage as well as delay or mitigate the sheet debonding from the concrete surface.

The Size Effect of the Shear Strengths of Reinforced Concrete Beams Strengthened with Carbon FRP (CFRP로 전단보강된 철근콘크리트 보의 크기효과)

  • Zi, Goang-Seup;Kim, Ki-Hong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.291-294
    • /
    • 2005
  • Presented are the results of recent tests on diagonal shear failure of reinforced concrete beams which are externally reinforced in the transverse direction by a unidirectional carbon fiber reinforced polymer, instead of the traditional steel stirrups. Three different series of the beams with different shear reinforcements, i.e. U-wrapping with carbon sheet, U-wrapping with carbon strips and full wrapping with carbon strips were tested. Those beams were geometrically similar, and the size range is 1:1.9:4. The failure of the beams are characterized by delamination, crushing of concrete and distributed shear cracks. It is found that the size effect is much weaker than that of the reference beams without CFRP. Therefore CFRP sheet may be used as the transverse reinforcement with a minor size effect. However, it is not clear that the same conclusion can be drawn in other sizes. Further researches are recommended.

  • PDF

Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads

  • Park, Jai Woo;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.453-472
    • /
    • 2013
  • This paper presents the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened CFT (concrete-filled steel tubes) columns under axial loads. Circular and square specimens were selected to investigate the retrofitting effects of CFRP sheet on CFT columns. Test parameters are cross section of CFT, D/t (B/t) ratios, and the number of CFRP layers. The load and ductility capacities were evaluated for each specimen. Structural behavior comparisons of circular and rectangular section will be represented in the experimental result discussion section. Finally, ultimate load formula of CFRP strengthened CFT will be proposed to calculate the ultimate strength of CFRP strengthened circular CFT. The prediction values are in good agreement with the test results obtained in this study and in the literature.