• Title/Summary/Keyword: FRP design method

Search Result 117, Processing Time 0.024 seconds

Recycle of the Glass Fiber Obtained from the Roving Cloth of FRP I: Study for the Physical Properties of Fiber-reinforced Mortar (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 I: 섬유강화 모르타르의 물성에 관한 연구)

  • Yoon, Koo-Young;Kim, Yong-Seop;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.102-106
    • /
    • 2007
  • While the effort has been made in recycling the FRP (Fiber Reinforced Plastic) used for the medium-to-small size ships, researchers try to find out the methods more favorable for the environments and more value-added. In respect to the fact that the FRP consists of two types of layers, roving and mat, differentiated by the 2-dimensional structure, our group was able to separate the layers of FRP instead of grinding it. The roving cloth was cut to the long glass fibers (about 50 mm long; calling it 'F-fiber' afterwards). F-fiber showed increasing tensile strength and chemical-resistance possibly due to the remained resin (about 25% by weight). In this experiment fiber-reinforced mortars are made of the F-fiber as a recycling method of FRP. The mortar containing 2% (v/v) F-fiber results in 34.6% increment of bending strength from the standard after 28 day curing. The resulting strength is similar to that of the mortar with imported polyvinyl fiber P-54. These results imply that F-fiber can be applied to the 'fiber reinforced mortar' and furthermore may be a substitute for the imported fibers.

  • PDF

Iterative neural network strategy for static model identification of an FRP deck

  • Kim, Dookie;Kim, Dong Hyawn;Cui, Jintao;Seo, Hyeong Yeol;Lee, Young Ho
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • This study proposes a system identification technique for a fiber-reinforced polymer deck with neural networks. Neural networks are trained for system identification and the identified structure gives training data in return. This process is repeated until the identified parameters converge. Hence, the proposed algorithm is called an iterative neural network scheme. The proposed algorithm also relies on recent developments in the experimental design of the response surface method. The proposed strategy is verified with known systems and applied to a fiber-reinforced polymer bridge deck with experimental data.

Flexural Behavior of Prestressed Concrete Beams with CFRP(Carbon Fiber Reinforced Plastic) Tendons (CFRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 휨거동)

  • 조병완;태기호;최용환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.639-644
    • /
    • 2000
  • Prestressing steels are susceptible to corrosion, which is considered the major reason in the deterioration of prestressed concrete structures. To solve this problem, many research have been made to utilize new type of tendons. FRP tendons have many advantages compared to steel tendons. However, FRP tendons have some disadvantages, such as no plastic behavior. This study focused on the flexural behavior of prestresssed concrete beams which is fabricated by post-tensioning method with CFRP (Carbon Fiber Reinforced Plastic) tendons. Th results drawn from the study, prestressed concrete beams with CFRP tendons have higher flexural cracking load, flexural yielding load, and flexural fracture load. While displacement at the fracture stage is lower compared to prestressed concrete beams with steel tendon. Excessive steel reinforcement lead lower ductility index. So, appropriate reinforcement guideline is needed. Further more, prestressed concrete beams with CFRP tendons can have sufficient ductility index when ruptured by crushing of concrete or used unbonded tendon. Therefore, the best design method for prestressed concrete beams with CFRP tendons is over-reinforcement, and use of unbonded tendon.

  • PDF

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh;Yam, Michael C.H.
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2021
  • Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.

A Study on the way to improve the rear van's durability of Korean Light Tactical Vehicle (한국형 전술차량 후방밴 강성·강도 보강을 통한 내구성 향상에 관한 연구)

  • Park, Jinwon;Kim, Dooho;Song, Buguen;Kim, Seonjin;Yun, Sangjin
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.2
    • /
    • pp.269-282
    • /
    • 2018
  • Purpose: The purpose of this study was to improve the FRP Van's durability by analyzing the problematic parameters, redesigning the rear van, and verifying the design drafts using the CAE analysis & Rig test. Methods: The collected data through the government quality inspection and field spot check were thoroughly analyzed through the characteristics diagram and the improvement suggestions were verified by performing CAE analysis, like the dynamic stiffness, Torsional stiffness, open/close condition's strength, Full car durability and Carrying out the actual test. Results: The results of this study are as follows; The output of CAE analysis shows that improvement suggestions have considerable effects on the reinforcement of FRP structure, and the actual torsion and open/close condition durability test prove that rear van may have durable life which is equivalent to vehicle life cycle. Conclusion: The structural weakness of KLTV's FRP rear van was overcome by applying the stiffener in rear van and changing the bonding method of each FRP pieces. That suggestions were proved using CAE analysis and Rig test.

Suggestion of Flexural Strengthening Ratio of NSM Strengthened Concrete Railroad Bridge based on Probability and Reliability (확률.신뢰도에 기초한 표면매립보강(NSM) 콘크리트 철도교의 휨보강비 산정)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Ki-Hong;Park, Ji-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.121-124
    • /
    • 2008
  • The purpose of this study is to evaluate the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate. The railroad bridge is usually under vibration and impact in service state. Therefore, it is important that the effective strengthening performance must be exhibited under the service loading is acted. To widely apply the NSM method for the concrete railroad bridge in field, it needs that reasonable strengthening parameter such as strengthening ratio has to be investigated and evaluated when the strengthening design is conducted. In this study, to suggest more reasonable strengthening ratio, material and geometrical uncertainty was considered and applied by Monte Carlo Simulation (MSC) technique. Lastly, the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate was evaluated by using the limit state function with the target reliability index.

  • PDF

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Experimental and Analytical Study on the Steel Beam bonded with CFRP Strip (레진으로 접착 보강한 강재보의 거동)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • In this paper, the behaviour of composite steel-CFRP members is studied experimentally and using FE-analysis. The use of advance composite materials in construction for repair and rehabilitation has become a frequent used method in the last decade. FRP composites have many advantages over the traditional technique of steel bonding for a number of reasons: 1. Composites add little or no additional weight to a building, eliminating the need for costly foundation strengthening. 2. FRP composites are very thin (1.2mm to 1.4mm). So there is no loss of floor space and negligible effect over the architectural aspect. 3. FRP composites do not corrode, this makes it long lasting. However, the method is yet to become a mainstream application due to a number of economical and design related issues. Brittle debonding failure, aging effect on bonding, broad based awareness and proper design guidelines are the main concern for future research works. This paper is focused on the ultimate load carrying capacity of the CFRP-strengthened beams and their effect on the deflection and failures modes by varying the amount of CFRP content.

Filament Band Winding Simulation for Fiber Reinforced Cylindrical Pressure Vessels (FRP의 원통형 압력 용기제작을 위한 필라멘트 밴드의 감김 시뮬레이션)

  • Yun, Jaedeuk;Fu, Jianhui;Jung, Yoongho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The filament winding method is widely used to manufacture products of fiber reinforced plastics (FRP), such as high pressure vessels, launch tubes and pipes. For reducing winding time, the method of winding by filament band which consists of several filament fibers is used. NC winding machine is used for precise winding and NC path is needed. Before filament winding, users should verify that winding path which presented by a line is appropriate by filament winding simulation. Also, the used length of each filament is different. So, if the peak filament exhausted, it causes to stop manufacturing. In this research, we developed software which visualizes 3D graphic of filament band winding path and simulates winding process on real time. And we proposed algorithm about calculation of each filament usage. We use geodesic equation for generating filament band surface and calculating the usage length of each filament.

Collision Analysis between FRP Fishing Boats According to Various Configurations (여러 가지 충돌 상황에 따른 FRP 어선 간의 충돌 해석)

  • Jang, In-Sik;Kim, Yong-Seop;Kim, Il-Dong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.253-262
    • /
    • 2006
  • In this paper, collision analysis is carried out between two FRP fishing boats. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the boat is constructed using 3-D CAD program. The formation of a finite element from a geometric data of the boats is carried out using HYPERMESH that is the commercial software for mesh generation and post processing. Twelve collision configurations are established by combining two kinds of contact angle($90^{\circ},\;135^{\circ}$) and three different speed(5, 10, 15knot) for small and large boats. Collision analysis is accomplished using DYNA3D. Stress distribution and deformation shape are investigated for each collision condition. In general, $90^{\circ}$ collision angle generate larger stress than $135^{\circ}$ case and the collision for two moving boats showed larger maximum stress than the case that one is moving and the other is stationary. When analysis is carried out until 150ms contact parts of two boats are broken for 10 and 15knot collision speed, in which maximum stress is larger than ultimate strength of the material.

  • PDF