• Title/Summary/Keyword: FRP deck

Search Result 68, Processing Time 0.022 seconds

Optimal Design of FRP Bridge Decks (FRP 바닥판의 최적설계)

  • Park, Jae-Gyun;Ahn, Il-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.108-114
    • /
    • 2008
  • Although FRP is relatively new material for constructional use, there are several commercial GFRP bridge decks available today. In this paper we first set variables which decide the design of a GFRP deck based on commercial products. Under the assumption of linear elastic behavior under DB24 load, all the conditions of stability and serviceability are considered. We seek the best solution which minimizes the cross section area using genetic algorithm. The optimal solution shows that the shape is close to the ASSET deck with larger angle of the web and smaller area.

Behavior Characteristics of FRP-Concrete Composite Beam using FRC (FRC를 적용한 FRP-콘크리트 합성보의 거동특성)

  • Cho Jeong-Rae;Cho Keunhee;Kim Byung-Suk;Chin Won Jong;Kim Sung Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.742-745
    • /
    • 2004
  • The FRP-concrete composite deck system has advantages of corrosion free and easy construction. The system is, however, comprised of two brittle materials, so that it suffers from inherent disadvantage of lack of ductility. In this study, some conceptual design is presented for preventing the brittle failure of FRP-concrete composite deck at ultimate load level. 4-point bending tests are performed for FRP-concrete composite beams using FRC(Fiber Reinforced Concrete). The specimens use the box-shape FRP member in the lower portion. Four types of concrete with different compressive strengths and ductilities including normal mortar and 3 FRCs are placed in the upper portion. Typical failure mode in the test is identified; Concrete compressive failure occurs first at the maximum moment region, and the interfacial debonding between FRP and concrete member proceeds. Finally, the tensile rupture of FRP member occurs. The specimen using FRC with the high compressive ductility of concrete fails with less brittle manner than other specimens. The reason is that the ductility from the concrete in compression prevents the sudden loss of load-carrying capacity after compressive concrete failure.

  • PDF

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

An Experimental Study of Fatigue and Static Behavior for Composite Deck Member (복합재료 바닥판 부재의 정적 및 피로거동에 관한 시험적 연구)

  • Kim, Doo-Hwan;Kim, Young-Chan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.15-21
    • /
    • 2011
  • It is required to accumulate experimental datum that make the theories easy to general technicians in order to use composite material widely on construction field. Therefore, we intend to present base technologies that evaluate static and fatigue performance according to the FRP deck section and offer the basis datum for FRP deck analyses and the design standards. As results of static tests, it can be shown that specimen with fabric direction has higher rigidity than that with normal to fabric direction and convergence for the datum. Due to this reason, it has more stable behavior by structural characteristics of matrix arrangement during destruction. For the fatigue tests, we found that by increasing the number of test repetition, test specimen with fabric direction had an crack just before the destruction, and the contact surface was detached.

An Experimental Study on Static Behaviors of Composite Sandwich Bridge Decks with Hybrid GFRP-Steel Core (하이브리드 GFRP-강재 심재를 갖는 복합샌드위치 교량바닥판의 정적거동에 관한 실험 연구)

  • Ji, Hyo-Seon;Chun, Kyung-Sik;Park, Dae-Yong;Son, Byung-Jik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.12-17
    • /
    • 2011
  • This paper presents the flexural behavior of a hybrid Glass Fiber-Reinforced Polymer(GFRP)-steel decks for use in deteriorated bridge decks replacement. Static load tests were conducted to investigate the structural characteristics of the hybrid FRP-steel deck. The tested deck panel satisfied the design criteria. The failure mode of the hybrid deck was demonstrated ductility with deformation beyond initial yielding. The responses were compared with the ANSYS finite element predictions. It was found that the presented hybrid deck was efficient for use in bridges. The thickness of the hybrid deck may be decreased when compared to that of the all FRP deck with similar flexural rigidity.

Development of Bridge Expansion Joint for Fiber Reinforced Polymer Deck (FRP바닥판용 신축이음장치 개발)

  • Lee, Young-Ho;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.348-353
    • /
    • 2007
  • This paper presents design specifications and characteristics of bridge expansion joints to develop new type-joints in fiber reinforced polymer decks. Based on properties of the fiber reinforced polymer decks and fundamental process to calculate their expansion length, new expansion joints fur fiber reinforced polymer decks on typical steel or concrete girder are developed and proposed.

  • PDF

An approach for failure analysis of composite bridge deck systems with openings

  • Zhao, Lei;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.123-141
    • /
    • 2005
  • Design details pertaining to the connection between some recently developed fiber reinforced polymer (FRP) composite deck systems and the supporting girders require openings through cells of the deck. This significantly changes the stress distribution in these components. As a result, the conventional assumptions that deck designs are controlled by their stiffness, and not strength, needs a closer examination. This paper proposes an analytical method to investigate the stress states and failure mechanisms using a type of "global-local" modeling perspective, incorporating classical lamination theory and first ply failure criterion with use of appropriate stress concentration factors around the cutouts. The use of a "smeared-stress" approach is presented as a potential means of simplifying certain FRP specific complexities, while still enabling prediction of overall failure.

Finite Element Analysis for Bending Behavior of Composite Beam with Perfobond FRP Used as a Permanent Formwork (퍼포본드 FRP를 영구거푸집으로 활용한 합성보의 휨거동에 관한 유한요소해석 연구)

  • Kook, Moo-Sung;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3280-3286
    • /
    • 2011
  • In recent years, many efforts have steadily been allocated to develop a new deck system in terms of its materials and structures in order to make up for the shortcomings of reinforced concrete deck. This study implemented and analyzed the verification for concrete composite beam with perfobond FRP as a permanent formwork and the tensile reinforcement, using non-linear finite element analysis program. Approximately 8-15% difference of ultimate failure load between numerical and experimental results were found and showed a similar figure of strain distribution in failure state.

Design approach for a FRP structural formwork based steel-free modular bridge system

  • Cheng, Lijuan;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.561-584
    • /
    • 2006
  • The paper presents results of parametric studies, and an overall approach for the design of a modular bridge system which incorporates a steel-reinforcement free concrete slab cast on top of carbon FRP stiffened deck panels which act as both structural formwork and flexural reinforcement, spanning between hollow box type FRP girders. Results of the parametric studies are highlighted to elucidate important relationships between critical configurational parameters and empirical equations based on numerical studies are presented. Results are discussed at the level of the individual deck and girder components, and as a slab-on-girder bridge system. An overall design methodology for the components and bridge system including critical performance checks is also presented.

A Study on the Standard of Ship Hull Construction for Aluminium Alloys Fishing Boats (알루미늄 합금제 어선건조를 위한 선체구조기준 설정에 관한 연구)

  • Hong, Bong-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.1
    • /
    • pp.22-82
    • /
    • 2000
  • The ship hull construction materials of fishing boat has changed in order that wooden, steel, and fiber glass reinforced plastic(FRP). The fishing boat made from FRP has increased every year because that materials has proved excellent of the characteries for fishing boats construction members. Recently, FRP tend towards evasion for the pollution of air enviroment. Therefore. the materials of fishing boat construction must be exchanged by another one. Aluminium alloys must be recommended for fishing boats construction mateials because that is light weight and corrosion resisting in the sea water. Regulation of the standard of ship hull construction for aluminium alloys fishing boats did not enact laws in the interior now. Therefore, this regulation was studied by the following items. that is Rudder, Bottom construction, Side hull plate construction, Deck plate construction, piller. Water tight bulkhead, Deep tank, Fish tank, Stern construction, Superstructure, Deck house construction, Hatch, Engine room opening, Hatch opening, Bulwark, Welding and Rivet etc. A study on the regulation will be contributed to enact laws for fishing boat construction of aluminium alloys.

  • PDF