• Title/Summary/Keyword: FRP Strengthening System

Search Result 38, Processing Time 0.026 seconds

Construction Method Improvement of the FRP-plate Strengthening Method using the Velcro (벨크로를 이용한 FRP 플레이트 보강공법의 시공공법 개선)

  • Hong, Geon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.225-232
    • /
    • 2008
  • The object of this paper is to study the flexural strengthening effectiveness on the construction method of bonding of the FRP. The existing FRP flexural strengthening methods were divided into FRP sheet strengthening and FRP plate strengthening according to the FRP condition. For improving the existing construction method, this paper proposed the velcro type anchorage system for temporary bonding material, and flexural strengthening effects were tested. Test variables were bonding methods of the FRP strengthening materials, and total 4 specimens were tested. Following to the test results, it is shown that FRP-plate strengthening method using the velcro can get better workability than existing construction methods, and have excellent strengthening performance including flexural strength, stiffness, ductility and failure aspect.

Study on Flexural Strengthening Capacity of FRP-Plate Strengthening System with the Velcro (벨크로를 이용한 FRP판 보강공법의 휨보강성능에 대한 연구)

  • Shin, Dong-Yoon;Hong, Geon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.121-124
    • /
    • 2006
  • This study focuses on the flexural behavior of RC beam with externally bonding FRP reinforcement. FRP-plate strengthening system is mainly installed with an anchor-bolt. But the installation with it has several disadvantage as a complicated work, a high labor costs. To complement these disadvantage, the test is performed about improved FRP-plate strengthening system.

  • PDF

Review of Anchorage Systems for Externally Bonded FRP Laminates

  • Grelle, Stephen V.;Sneed, Lesley H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.17-33
    • /
    • 2013
  • The most recent report by ACI Committee 440 on externally bonded fiber reinforced polymer (FRP) strengthening systems states that systems designed to mechanically anchor FRP should be studied in detail and substantiated by physical testing. To select and design an appropriate anchorage system for use in an FRP strengthening system, it is important that findings from previous research studies be known. This paper presents a comprehensive literature review of the performance of different mechanical anchorage systems used in FRP strengthening applications. Each anchorage system is discussed in terms of its purpose and performance. Advantages and disadvantages of each system are discussed, and areas in need of future research are explored.

Advances on the Behavior Characterization of FRP-Anchored Carbon Fiber-Reinforced Polymer (CFRP) Sheets Used to Strengthen Concrete Elements

  • Brena, Sergio F.;McGuirk, Geoffrey N.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.3-16
    • /
    • 2013
  • Strengthening concrete structures using FRP composites is a commonly considered technology in many practical situations. The success of the strengthening intervention largely depends on adequate bond between FRP sheets and the concrete substrate. In recent years, techniques to anchor FRP sheets in applications where sheets must develop strength in a short length have been proposed. One of these techniques includes use of FRP anchors embedded into the concrete substrate and forming part of the composite strengthening system. This paper presents the results of studies conducted recently at the University of Massachusetts Amherst to advance the understanding on the behavior of FRP anchored systems.

Repair and Strengthening Method Using Near Surface Mounted FRP Rods and Overlay (FRP Rod를 이용한 표면매립 및 단면 확대 복합 보수$\cdot$보강 공법)

  • Hwang Gum-sic;Park Chin-ki;Won Jong-pil
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.66-74
    • /
    • 2005
  • This paper reports new repair and strengthening mathod using improved material. This mathod have two type according to covering thickness of reinforcement. One type is near surface mounted FRP rod. Anther type is overay. Fiber Reinforced Plastic (FRP) materials has become very popular in recent years. FRP material used to rehabilitate many types of structures with superior characteristics such as high strength and stiffness and corrosion resistance. This strengthening mathod were used FRP rod which have better bond and shear strangth than current FRP rod. Development of FRP rod due to 3-D winding system. In addition, Ductile hybrid FRP has a certain plastic deformation and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. Moerover this mathod can be effective repair of base concrete by sprayed polymer mortar.

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.

Experimental Study on the Behaviore of Anchorage for Externally Prestressed CFRP Laminate (외부긴장 보강을 위한 CFRP 판의 정착부 거동 실험)

  • You Young-Jun;Park Jong-Sup;Park Young-Hwan;Jung Woo-Tai;Kang Jae Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.17-20
    • /
    • 2004
  • FRP strengthening system that bonds FRP sheet or laminate underneath structure has been used popularly thesedays. The failure of this bonding system occurs mainly at the interface of bonded surface abruptly. So it is difficult to expect the failure and FRP can't show its full material capacity that makes it uneconomically. By that reason, KICT proposed a system to install FRP aminate to structure for strengthening not by bondging but by unbonding. It is to install both ends of FRP laminate by anchoring underneath structure without bonding. Then, the failure is not an interfacial problem any more, it is governed by mechanical anchoring. This paper includes an experimental study about anchoring system for prestressing CFRP laminate.

  • PDF

Flexural Failure Design Criteria for Retrofitted RC Slabs using FRP-UHPC Hybrid System (FRP-UHPC 복합 보강기법으로 보강된 RC 슬라브의 휨 파괴를 위한 설계 조건)

  • Kim, Jung Joong;Noh, Hyuk-Chun;Reda Taha, Mahmoud M.
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • This study proposes flexural failure design criteria of continuous slabs enhanced by a hybrid system of fiber reinforced polymer (FRP) and ultra high performance concrete (UHPC). The proposed hybrid retrofit system is designed to be placed at the top surface of the slabs for flexural strengthening of the sections in both positive and negative moment zones. The enhancing mechanisms of the proposed system for both positive and negative moment regions are presented. The neutral axis of the enhanced sections in positive moment zone at flexural failure is enforced to be in UHPC overlay for preventing the compression in FRP. From this condition, a relationship between design parameters of FRP and UHPC is established. Although the capacity of the proposed retrofit system to enhance flexural strength and ductility is confirmed through experiments of one-way RC slabs having two continuous spans, the retrofitted slabs failed in shear. To prevent this shear failure, a design criteria of flexural failure is proposed.

Finite element modeling methodologies for FRP strengthened RC members

  • Park, Sangdon;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.389-409
    • /
    • 2005
  • The Finite Element Analysis (FEA) is evidently a powerful tool for the analysis of structural concrete having nonlinearity and brittle failure properties. However, the result of FEA of structural concrete is sensitive to two modeling factors: the shear transfer coefficient (STC) for an open concrete crack and force convergence tolerance value (CONVTOL). Very limited work has been done to find the optimal FE Modeling (FEM) methodologies for structural concrete members strengthened with externally bonded FRP sheets. A total of 22 experimental deep beams with or without FRP flexure or/and shear strengthening systems are analyzed by nonlinear FEA using ANAYS program. For each experimental beams, an FE model with a total of 16 cases of modeling factor combinations are developed and analyzed to find the optimal FEM methodology. Two elements the SHELL63 and SOLID46 representing the material properties of FRP laminate are investigated and compared. The results of this research suggest that the optimal combination of modeling factor is STC of 0.25 and CONVTOL of 0.2. A SOLID 46 element representing the FRP strengthening system leads to better results than a SHELL 63 element does.