• Title/Summary/Keyword: FRP Composite Materials

Search Result 200, Processing Time 0.029 seconds

An Experimental Evaluation of Seismic Performancef for Damaged Reinforced Concrete Bridge Piers. (손상된 철근콘크리트 교각의 내진성능평가를 위한 실험연구)

  • 박창규;이은희;이대형;정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.385-392
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P = 0.1 $f_{ck}$ $A_{g}$. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility.y.

  • PDF

Static and dynamic responses of Halgavor Footbridge using steel and FRP materials

  • Gunaydin, M.;Adanur, S.;Altunisik, A.C.;Sevim, B.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.51-69
    • /
    • 2015
  • In recent years, the use of fiber reinforced polymer composites has increased because of their unique features. They have been used widely in the aircraft and space industries, medical and sporting goods and automotive industries. Thanks to their beneficial and various advantages over traditional materials such as high strength, high rigidity, low weight, corrosion resistance, low maintenance cost, aesthetic appearance and easy demountable or moveable construction. In this paper, it is aimed to determine and compare the geometrically nonlinear static and dynamic analysis results of footbridges using steel and glass fiber reinforced polymer composite (GFRP) materials. For this purpose, Halgavor suspension footbridge is selected as numerical examples. The analyses are performed using three identical footbridges, first constructed from steel, second built only with GFRP material and third made of steel- GFRP material, under static and dynamic loadings using finite element method. In the finite element modeling and analyses, SAP2000 program is used. Geometric nonlinearities are taken into consideration in the analysis using P-Delta criterion. The numerical results have indicated that the responses of the three bridges are different and that the response values obtained for the GFRP composite bridge are quite less compared to the steel bridge. It is understood that GFRP material is more useful than the steel for the footbridges.

Numerical modelling for monitoring the hysteretic behaviour of CFRP-retrofitted RC exterior beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.27-37
    • /
    • 2011
  • This paper presents the results of a study on the capability of nonlinear quasi-static finite element modelling in simulating the hysteretic behaviour of CFRP and GFRP-retrofitted RC exterior beam-column joints under cyclic loads. Four specimens including two plain and two CFRP/GFRP-strengthened beam-column joints tested by Mahini and Ronagh (2004) and other researchers are modelled using ANSYS. Concrete in compression is defined by the modified Hognestad model and anisotropic multi-linear model is employed for modelling the stress-strain relations in reinforcing bars while anisotropic plasticity is considered for the FRP composite. Both concrete and FRP are modelled using solid elements whereas space link elements are used for steel bars considering a perfect bond between materials. A step by step load increment procedure to simulate the cyclic loading regime employed in the testing. An automatically reforming stiffness matrix strategy is used in order to simulate the actual seismic performance of the RC concrete after cracking, steel yielding and concrete crushing during the push and pull loading cycles. The results show that the hysteretic simulation for all specimens is satisfactory and therefore suggest that the numerical model can be used as an inexpensive tool to design of FRP-strengthened RC beam-column joints under cyclic loads.

Experimental Investigation of the Effect of Manufacturing and Working Conditions on the Deformation of Laminated Composite Structures (적층복합재료구조물의 변형에 미치는 제작조건과 작동조건의 영향에 대한 실험적 고찰)

  • Nhut, Pham Thanh;Yum, Young-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.265-272
    • /
    • 2013
  • Fiber-reinforced plastic (FRP) is applied to fabricate the main structures of composite boats. Most of them are made from molds. These products deform after releasing from the mold and they also deform in high temperature environment. Therefore, experimental investigation and evaluation of deformation of laminated composite structures under various manufacturing and working conditions are necessary. The specimens of L-shape and curveshape were made from unsaturated polyester resin and fiberglass material. Input factors (independent variables) are percentage of hardener and manufacturing temperature and four levels of working temperature and output factor is the deformation which is measured on these specimens. From the results, it was observed that the higher the hardener rate and temperature, the lower the deformation. When the working temperature increased, the specimens showed great variations for the initial deformation values. Besides, the values of deformation or input factors could be predicted by regression equations.

A Study on the Effect of Fracture Delay of Intelligent FRP by Transparent Photoelastic Experimental Method (투과형 광탄성 실험법에 의한 지능성 FRP의 파괴지연 효과에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1904-1911
    • /
    • 1999
  • The most effective material in the shape memory alloy(SMA) is the TiNi alloy, because its shape recovery characteristics are very excellent. We molded the composite material with shape memory function. The fiber of it is $Ti_{50}-Ni_{50}$ shape memory alloy and matrix of it is epoxy resin(Araldite B41, Hardner HT903. Ciba Geigy), its adhesive and optical sensitivity are very excellent. It was assured that the composite material could be used as model material of photoelastic experiment for intelligent materials or structures. In this research, the composite material with shape memory function is used as model material of photoelastic experiment. Photoelastic experimental hybrid method is developed in this research, it is assured that it is useful on the obtaining stress intensity factor and the separation of stress components from only isochromatic data. The measuring method of stress intensity factor of intelligent material by photoelastic experiment is introduced. In the mode I state, we can know that stress intensity factors are decreased more than 50% of stress intensity factor of room temperature when temperature of fiber is greater than 4$0^{\circ}C$, prestrain greater than 5% and fiber volume ratio greater than 0.42% and that stress intensity factors are decreased by 100% when fiber volume ratio is greater than 0.84%, prestrain greater than 5% and temperature greater than 60 $^{\circ}C$.

Experimental and Analytical Study on the Steel Beam bonded with CFRP Strip (레진으로 접착 보강한 강재보의 거동)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • In this paper, the behaviour of composite steel-CFRP members is studied experimentally and using FE-analysis. The use of advance composite materials in construction for repair and rehabilitation has become a frequent used method in the last decade. FRP composites have many advantages over the traditional technique of steel bonding for a number of reasons: 1. Composites add little or no additional weight to a building, eliminating the need for costly foundation strengthening. 2. FRP composites are very thin (1.2mm to 1.4mm). So there is no loss of floor space and negligible effect over the architectural aspect. 3. FRP composites do not corrode, this makes it long lasting. However, the method is yet to become a mainstream application due to a number of economical and design related issues. Brittle debonding failure, aging effect on bonding, broad based awareness and proper design guidelines are the main concern for future research works. This paper is focused on the ultimate load carrying capacity of the CFRP-strengthened beams and their effect on the deflection and failures modes by varying the amount of CFRP content.

Research on Mechanical Properties and Characteristics of Hybrid Composites for Boat (보트에 적용되는 하이브리드 복합재에 대한 기계적 특성 연구)

  • Cho, Je-Hyoung;Kim, Sung-Hoon;Yoon, Sung-Won;Ha, Jong-Rok;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2016
  • Recently, Application of composite materials are increased in transport area for weight reduction. Also, Related technical developments have been implemented actively at domestic and abroad. In particular, The carbon fiber has high strength and ultra light property higher than stainless steel, aluminum, GFRP as Eco-friendly material. Carbon fiber contribute to improving the environmental effect such as fuel saving, expansion of loadage, reducing the exhaustion of carbon dioxide through the weight reduction of transport area. In addition, The carbon fiber is applied to the ship in the area of race yacht, luxury cruise boat as weight reduction and high added-value materials, but there is limited application for general boat because price of carbon fiber is very expensive. For the weight reduction of general boat hull, being used as structure materials, glass fiber and carbon fiber are applied to hull with form of hybrid composite materials, but application of domestic and research for development are incomlete. In this study, An evaluations of mechanical strength property and fatigue strength are performed on composite materials by hybrid weaving of glass fiber and carbon fiber and composite materials forming method by hybrid forming.

Mechanical Behaviour of GFRP Composites according to Alumina Powder Impregnation Ratios in Resin (알루미나 분말 혼합 비율에 따른 GFRP의 기계적 강도 특성)

  • Kang, Dae-Kon;Park, Jai-Hak
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.22-30
    • /
    • 2020
  • Small fishing vessels are manufactured using FRP. Various studies have been conducted to increase the strength of the composite material by mixing alumina powder with resin. Tensile tests and flexural strength tests are conducted to examine the effect of alumina powder on the strength of GFRP. In the current study, resin/alumina composites at different alumina contents (i.e., 0, 1, 5, and 10 vol%) have been prepared. The physical and mechanical properties of the prepared composites have been investigated. From the results, the tensile strength of the specimen with alumina powder mixed in at 10% shows the highest value of 155.66 MPa. The tensile strength of the specimen mixed with alumina powder increases with the amount of alumina powder impregnated. In the flexural strength test, the flexural strength of neat resin without alumina powder has a highest value of 257.7 MPa. The flexural modulus of ALMix-5 has a highest value of 12.06 GPa. Barcol hardness of ALMix-10 has a highest value of 51. We show that alumina powder leads to decreasing cracks on the surface and decreasing length area of delamination.

New technique for repairing circular steel beams by FRP plate

  • Daouadji, Tahar Hassaine;Abderezak, Rabahi;Rabia, Benferhat
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.171-190
    • /
    • 2022
  • In this paper, the problem of interfacial stresses in steel cantilever beams strengthened with bonded composite laminates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The original study in this paper carried out an analytical solution to estimate shear and peel-off stresses, as, interfacial stress analysis concentration under the uniformly distributed load and shear lag deformation. The theoretical prediction is compared with authors solutions from numerous researches. This phenomenon of deformation of the members, which gives probably approach on the study of interface of the reinforced structures, is called "shear lag effect". The resolution in this paper shows that the shear stress and the normal stress are significant and, are concentrated at the end of the composite plate of reinforcement, called "edge effect". A parametric study is carried out to show the effects of the variables of design and the physical properties of materials. This research is helpful for the understanding on mechanical behaviour of the interface and design of such structures.

Numerical modeling of semi-confined composite beams consisting of GFRP and concrete

  • Hassanzadeh, Amir Masoud;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.79-84
    • /
    • 2017
  • Utilizing composite members in structures has been considered by many researchers in the past few decades. Using FRP can be very effective owing to its excessively high-tensile strength, which compensate concrete weak performance in tension. In this research, the studied composite beam includes a GFRP semi-confined trapezoidal section covered by GFRP and concrete layers. To assess the bearing capacity, a finite-element model of a composite beam subjected to displacement control loading has been developed and the results were validated using experimental results found throughout the literature. Several parameters affecting the bending performance and behavior of the semi-confined beam have been investigated in this study. Some of these parameters included the thickness of GFRP trapezoidal section members, concrete layer thickness, GFRP layer thickness and the confinement degree of the beam. The results revealed that the beam confinement had the highest effect on the bearing capacity due to prevention of separation of concrete from GFRP which causes the failure of the beam. From the results obtained, an optimal model of primary beam section has been introduced, which provides a higher bearing capacity with the same volume of materials used in the original beam section.