• Title/Summary/Keyword: FRP 복합재료

Search Result 199, Processing Time 0.034 seconds

An Experimental of RC Beams Strengthened with Pultruded Glass Fiber and Steel strip (통기성 유리섬유-강판 인발성형 스트립으로 보강된 RC보의 실험적 거동분석)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.315-323
    • /
    • 2013
  • Recently, FRB is being used more as reinforcement of RC beam thanks to its material advantages in construction industry. The external attachment reinforcement of FRP is a construction method with advantages such as high strength, stiffness, excellent durability and construction practicability, despite of its weight. However, the reinforcement has a disadvantage to cause damage on permanent structure as its structure is water-tight by low water permeability reinforcement, preventing water from draining outside. The study attempted flexural failure test for GP of which material properties are equally same as the existing FRP and that with permeability, shows good binding with the concrete structure, durable performance and durability, comparably analyzing the improvement of durability and ductility according to changes of fiber contents of composite strip.

Development of Performance-Based Seismic Design of RC Column Using FRP Jacket by Displacement Coefficient Method (FRP 보강 철근콘크리트기둥의 변위계수법에 의한 내진성능설계기법 개발)

  • Cho, Chang-Geun;Ha, Gee-Joo;Bae, Su-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.491-497
    • /
    • 2007
  • In the current research, the scheme of displacement-based seismic design for seismic retrofit of concrete structures using FRP composite materials has been proposed. An algorithm of the nonlinear flexural analysis of FRP composite concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. An algorithm for performance-based seismic retrofit design of reinforced concrete columns with FRP jacket has been newly introduced to modify the displacement coefficient method used in reinforced concrete structures. From applications of retrofit design, the method are easy to apply in the practice of retrofit design and give practical prediction of nonlinear seismic performance evaluation of retrofitted structures.

A Study on the Evaluation of Shear Resisting Capacity for the Various Perforated Shape Shear Connector (합성거동을 위한 유공판형 전단연결재의 강도평가에 관한 연구)

  • Kim, Young-Ho
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • In recent years, the reversed L-shaped perforated shear connector has been developed to mitigate the problem associated with headed stud and Perforbond shear connector and to simulate the simultaneous failure of concrete and shear connector. And FRP perforated shear connector has been applied to composite concrete and FRP module in the FRP-concrete composite bridge deck. The design criterion of the reversed L-shaped and FRP perforated shear connector has not been established yet since the lack of experimental and analytical study results. In this paper, the existing design equations for the Perforated were briefly discussed and the equation fur the prediction of shear resisting capacity of the reversed L-shaped and FRP perforated shear connector was suggested based on the experimental test, FEM analysis. and the existing equation for the Perfobond. The predict results obtained by the suggested equation arc compared with the experimental results, the applicability and effectiveness of suggested equation was verified.

Design of Pultruded I-shape FRP Compression Member (펄트루젼 I형 FRP 압축재의 설계)

  • Joo, Hyung-Joong;Lee, Seung-Sik;Yi, Jong-Seok;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.46-53
    • /
    • 2012
  • Using pultrusion process, FRP composite structural members having various cross-section shapes can be produced with unlimited lengths. Because of such reasons, these members are suitable for the application in the construction field. Especially, this material is highly appreciated if the material is to be used in the corrosive environments such as aquatic or oceanic environments due to its high corrosion resistance. However, design criteria for the FRP structural member are not developed yet. So, the research on the development of design guideline is needed ungently. In order to use the pultruded structural FRP member efficiently, the members are composed of thin plate components, and thus, the member is prone to buckle easily and the buckling is one of the governing strength limit states for the design. In this paper, we present the analytical study results pertaining to the buckling behavior of I-shape FRP compression member. In addition, design procedure and flow-chart are also proposed based on the study results including previous experimental results. Proposed design procedure is similar to that in ANSI/AISC 360-10 with minor modification. Therefore, it is convinced that the structural design of pultruded FRP compression member could be done easily by following design procedure proposed in this paper.

Design of a FRP Deck Using Topology and Shape Optimization (위상과 형상최적화 기법을 사용한 FRP 교량 바닥판의 설계)

  • Lee, Eun-Hyung;Park, Jae-Gyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.501-507
    • /
    • 2009
  • By using topology and shape optimization, a theoretically optimum FRP deck was proposed. Firstly, a topologically optimal shape, truss-like structure without hinges, was found. A truss-shape frame is the most ideal structure when subjected to a concentrated force at the center of simply supported beam. An armature was found at the point joining horizontal chord and diagonal chord, which was used as a new design variable. Secondly, optimum value of each variable was decided through shape optimization using genetic algorithm. To compare it with existing commercial FRP decks, shape optimization was performed by fixing the height of FRP decks. To verify the performance of the FRP deck proposed in this study, a finite element analysis was performed. As a result, it satisfies serviceability and safety guide lines of FRP decks.

Simplified Analytical Model for Flexural Response of Fiber Reinforced Plastic Decks (FRP 바닥판의 휨 해석모델 개발)

  • Kim, Young-Bin;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.65-74
    • /
    • 2005
  • An analytical model was developed to investigate the flexural behavior of a pultruded fiber-reinforced plastic deck of rectangular unit module. The model is based on first-order shea. deformable plate theory (FSDT), and capable of predicting deflection of the deck of arbitrary laminate stacking sequences. To formulate tile problem, two-dimensional plate finite element method is employed. Numerical results are obtained for FRP decks under uniformly-distributed loading, addressing the effects of fiber angle and span-to-height ratio. It is found that the present analytical model is accurate and efficient for solving flexural behavior of FRP decks. Also, as the height of FRP deck plate is higher, the necessity of higher order Shear deformable plate theory(HSDT) is announced, not the FSDT in the plate analysis theory.

  • PDF

Prediction of Failure Modes for Reinforced Concrete Beams Strengthened with NSM CFRP Reinforcement (탄소섬유보강재로 표면매립 보강된 철근콘크리트보의 파괴모드 예측)

  • Jung, Woo Tai;Park, Jong Sup;Park, Young Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.349-356
    • /
    • 2008
  • Recently FRP (Fiber Reinforcement Polymer) is widely used for the strengthening of damaged RC beams. Although many tests were carried out to verify flexural capacity of RC beams strengthened with FRP sheet or plate, the behavior of strengthened RC beams has not yet clearly verified. To investigate the strengthening efficiency of the Near Surface Mounted Reinforcement (NSMR) technique experimentally and analytically, a total of 7 specimens have been tested. The experimental results revealed that specimens strengthened with NSMR improved the flexural capacity of RC beams. Also, while the NSMR specimens utilized CFRP reinforcement efficiently compared to the EBR (Externally Bonded Reinforcement) specimen, the NSMR specimens still have debonding failure between epoxy and concrete interface. This study has proposed the model to predict failure modes and failure loads. Good agreement was obtained between the predicted and the experimental results.

A study of permeability of ultra-fine cement matrix for continuous fiber reinforcement (연속섬유 보강용 초미립 시멘트 매트릭스의 침적성 연구)

  • Kim, T.J.;Kim, K.S.;Choi, L.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.177-182
    • /
    • 1999
  • 사용한 보수.보강재, Rod, Fabric, Strand 형상을 콘크리트 구조물등에 보강재로 사용되어왔다. 이 재료는 해양환경하에서 내식성과 내구성을 갖는 철근및 철골대체용 복합소재와 초고층 경량 연속섬유보강 시멘트 복합재료는 탄소섬유, 아라미드섬유, 유리섬유등의 쉬트(sheet)형상을 신건재, 비자성, 비전도성, 전파차폐용 재료등에 사용할수있다. 그러나 FRP Rod를 내식성이 요구되는 철근 및 철골대체재로 사용할 경우에는 폴리머 매트릭스의 열화, 섬유와 폴리머간 계면 접착강도의 한계, 화재시 내화성, 보강재의 인발성등의 단점들을 갖고있다[1]. (중략)

  • PDF

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.

Development of Performance-Based Seismic Design of RC Column Retrofitted By FRP Jacket using Direct Displacement-Based Design (직접변위기반설계법에 의한 철근콘크리트 기둥의 FRP 피복보강 내진성능설계법의 개발)

  • Cho, Chang-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.105-113
    • /
    • 2007
  • In the current research, an algorithm of performance-based seismic retrofit design of reinforced concrete columns using FRP jacket has been proposed. For exact prediction of the nonlinear flexural analysis or FRP composite RC members, multiaxial constitutive laws of concrete and composite materials have been presented. For seismic retrofit design, an algorithm of direct displacement-based design method (DDM) proposed by Chopra and Goel (2001) has been newly applied to determine the design thickness of FRP jacket in seismic retrofit of reinforced concrete columns. To compare with the displacement coefficient method (DCM), the DDM gives an accurate prediction of the target displacement in highly nonlinear region, since the DCM uses the elastic stiffness before reaching the yield load as the effective stiffness but the DDM uses the secant stiffness.