• Title/Summary/Keyword: FRAPCON

Search Result 10, Processing Time 0.021 seconds

Review of Calculational Model for the Performance of CANDU-Type Nuclear Development and Parametric Study on the Fuel Performance (CANDU형 핵연료거동에 관한 계산모형의 검토 및 거동특성에 관한 변수적 연구)

  • Man Sung Yim;Un Chul Lee;Ho Chun Suk
    • Nuclear Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.57-69
    • /
    • 1983
  • The LWR fuel performance analysis computer code, FRAPCON-1, are evaluated to investigate the performance of CANDU fuel elements loaded in Wolsung-1 reactor. The FRAPCON-1 models of neutron flux depression in fuel and of fuel-to-cladding heat transfer are modified, and the validity of fission gas release model for CANDU fuel is evaluated. And the heavy water properties are provided in calculating the heat transfer coefficient between cladding and coolant. By using the modified code, FRAPCON-1-CSK, the sensitivity studies are carried out for Wolsung-1 fuel element design parameters. The performance analysis is also performed for Wolsung-l fuel elements. The calculated results are discussed in terms of. LWR fuel design criteria because of unavailability of CANDU fuel design criteria.

  • PDF

RECENT UPDATES TO NRC FUEL PERFORMANCE CODES AND PLANS FOR FUTURE IMPROVEMENTS

  • Geelhood, Kenneth
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.509-522
    • /
    • 2011
  • FRAPCON-3.4a and FRAPTRAN 1.4 are the most recent versions of the U.S. Nuclear Regulatory Commission (NRC) steady-state and transient fuel performance codes, respectively. These codes have been assessed against separate effects data and integral assessment data and have been determined to provide a best estimate calculation of fuel performance. Recent updates included in FRAPCON-3.4a include updated material properties models, models for new fuel and cladding types, cladding finite element analysis capability, and capability to perform uncertainty analyses and calculate upper tolerance limits for important outputs. Recent updates included in FRAPTRAN 1.4 include: material properties models that are consistent with FRAPCON-3.4a, cladding failure models that are applicable for loss-of coolant-accident and reactivity initiated accident modeling, and updated heat transfer models. This paper briefly describes these code updates and data assessments, highlighting the particularly important improvements and data assessments. This paper also discusses areas of improvements that will be addressed in upcoming code versions.

FRAPCON analysis of cladding performance during dry storage operations

  • Richmond, David J.;Geelhood, Kenneth J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.306-312
    • /
    • 2018
  • There is an increasing need in the United States and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations or interim storage sites. Under normal conditions, the Nuclear Regulatory Commission limits cladding temperature to $400^{\circ}C$ for high-burnup (>45 GWd/mtU) fuel, with higher temperatures allowed for low-burnup fuel. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at $400^{\circ}C$. Results were representative of the majority of US light water reactor fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition

  • Yoon, Suji;Park, Kwangheon;Yun, Hyungju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2021
  • Currently, the interim storage pools of spent fuels in South Korea are expected to become saturated from 2024. It is required to prepare an operation plan of a domestic dry storage facility during a long-term period, with the researches on safety evaluation methods. This study modified the FRAPCON code to predict the spent fuel integrity evaluation such as the axial cladding temperature, the hoop stress and hydrogen distribution in dry storage. The cladding temperature in dry storage was calculated using the COBRA-SFS code with the burnup information which was calculated using the FRAPCON code. The hoop stress was calculated using the ideal gas equation with spent fuel information such as rod internal pressure. Numerical analysis method was used to calculate the degree of hydrogen diffusion according to the hydrogen concentration and temperature distribution during a dry storage period. Before 50 years of dry storage, the cladding temperature and hoop stress decreased rapidly. However, after 50 years, they decreased gradually and the cladding temperature was below 400 K. The initial temperature distribution and hydrogen concentration showed a parabolic line, but hydrogen was transferred by the hydrogen concentration and temperature gradient over time.

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

FRAPCON2을 사용한 DUPIC핵연료 거동 예측 : 열적분석

  • 김희문;박광헌;김기섭
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.92-97
    • /
    • 1997
  • 경수로용 전산코드인 ERAPCON2를 CANDU 핵연료의 거동에 사용하기 위하여 소결체-피복관틈새 열전도 모형과 소결체내 중성자속 분포 모형을 개조하였다. 기존의 CANDU핵연료 전산코드와 비교한 결과 CANDU핵연료의 열적거동 분석에 있어 거의 동일한 결과를 얻었다. 이를 사용하여 DUPIC 핵연료의 열적 거동특성을 알아보았다. 고용성 핵분열생성물에 의해 감소된 DUPIC 핵연료의 열전도도에 의하여 핵연료 중심부 온도가 증가됨을 알 수 있었다. 선출력 500W/cm에서 중심온도가 230-320K 정도 증가하였다. 따라서, DUPIC핵연료 설계에서 중심온도 증가에 대한 세밀한 분석이 요구된다.

  • PDF

Effect of two way thermal hydraulic-fuel performance coupling on multicycle depletion

  • Awais Zahur;Muhammad Rizwan Ali;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4431-4446
    • /
    • 2023
  • A Multiphysics coupling framework, MPCORE, has been developed to analyze safety parameters using the best estimate codes. The framework contains neutron kinetics (NK), thermal hydraulics (TH), and fuel performance (FP) codes to analyze fuel burnup, radial power distribution, and coolant temperature (Tbc). Shuffling and rotation capabilities have been verified on the Watts Bar reactor for three cycles. This study focuses on two coupling approaches for TH and FP modules. The one-way coupling approach involves coupling the FP code with the NK code, providing no data to the TH modules but getting Tbc as boundary condition from TH module. The two-way coupling approach exchanges information from FP to TH modules, so that the simplified heat conduction solver of the TH module is not used. The power profile in both approaches does not differ significantly, but there is an impact on coolant and cladding parameters. The one-way coupling approach tends to over-predict the cladding hydrogen concentration (CHC). This research highlights the difference between one-way and two-way coupling on critical boron concentration, Tbc, CHC, oxide surface temperature, and pellet centerline temperature. Overall, MPCORE framework with two-way coupling provides a more accurate and reliable analysis of safety parameters for nuclear reactors.