• Title/Summary/Keyword: FPI

Search Result 84, Processing Time 0.024 seconds

Rating of Fire Risk of Combustible Materials by the New Chung's Equation-IX (새로운 Chung's equation-IX에 의한 연소성 물질의 화재 위험성 등급 평가)

  • Yeong-Jin Chung;Eui Jin
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.144-152
    • /
    • 2023
  • To evaluate the fire risk of combustible materials, Chung's equations VII, VIII, and IX were newly established. The fire risk index-IX (FRI-IX) and fire risk rating (FRR) were calculated. Ginkgo, dawn redwood, toona, lime, walnut, and polymethylmethacrylate (PMMA) were selected as test specimens. The combustion characteristics were evaluated using a cone calorimeter according to ISO 5660-1. After combustion, the fire performance index-VII (FPI-VII) of the specimens, varied between 15.15 and 182.53 s2/kW, as determined by Chung's equations, and the fire growth index-VII (FGI-VII) varied between 0.0023 and 0.0165 kW/s2. The fire performance index-VIII (FPI-VIII) based on PMMA varied between 0.29 and 3.45, and the fire growth index-VIII (FGI-VIII) varied between 2.88 and 20.63. The FRI-IX, which is the fire risk rating, showed dawn redwood has a very high fire risk, with FRI-IX values of 71.14 (fire risk rating: G). Therefore, wood with a large amount of volatile organic compounds and a low bulk density showed a high value of FRI-IX by lowering FPI-VII and FPI-VIII and increasing FGI-VII and FGI-VIII.

The Comparison of Clinical Assessment Tools for the Foot Posture

  • Lee, Jin-Yi;Choi, Jong-Duk
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.115-123
    • /
    • 2012
  • It is important to assess foot posture when investigating the relationship between lower extremity dysfunctions and foot types. Although several measurements of static foot posture have been used, there is no consensus regarding clinical measurements for foot posture. The aim of this study is to explore the differences among navicular drift (NDt), foot posture index (FPI), arch index (AI), dorsal arch height ratio (DAHR), normal navicular height truncated (NNHt) and to discover the most effective measurement. After foot types were classified by navicular drop test (NDp), clinical measurements of NDt, FPI, AI, DAHR, and NNHt were performed on 64 subjects' feet. ANOVA analysis was used for the variance of the difference between the NDp and the five kinds of clinical measurements, and the level of significance was set at ${\alpha}$=.05. The results showed that all five clinical measurements demonstrated significant differences with navicular drop. In post-hoc, FPI and NNHt showed significant differences in all foot types. The five clinical measurements are suitable the classification of foot types through the NDp. Therefore, it could be possible to assess correct and objective foot posture by using FPI and NNHt.

A Multi-Channel Gas Sensor Using Fabry-Perot Interferometer-Based Infrared Spectrometer

  • Choi, Ju Chan;Lee, June Kyoo;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.402-407
    • /
    • 2012
  • We report a Fabry-Perot interferometer (FPI)-based multi-channel micro-spectrometer used for multi-gas measurement in the spectral range of $3-5{\mu}m$ and its gas sensing performance. The fabricated infrared (IR) spectrometer consists of two parts: an FPI on the top side for selective IR filtering and a $V_2O_5$-based IR detector array on the bottom side for the detection of the filtered IR. Experimental results show that the FPI-based multi-channel gas sensor has reliability and selectivity for simultaneously detecting environmentally harmful gases such as $CH_4$, $CO_2$, $N_2O$ and CO in the spectral range of $3-5{\mu}m$. The fabricated FPI-based multi-channel gas sensor also demonstrated that a reliable and selective detection of gas concentrations ranging from 0 to 500 ppm is feasible. In addition, the electrical characteristics demonstrate a superior response performance in regards to the selectivity in the multi-target gases.

Appraisal of Farmland Potential Productivity Using GIS (GIS를 이용한 농지 잠재생산성평가)

  • 박승기;이창수
    • Spatial Information Research
    • /
    • v.9 no.2
    • /
    • pp.341-352
    • /
    • 2001
  • This study was carried out to developed that appraisement model of Potential Productivity Index(PPI). PPI model was used Farmland Productivity Index(FPI) and Labor Productivity Index(LPI) by GIS, and PPI model applied to farm land consolidation region which has been completed recently. FPI was determined by overlapping Poly Grid of the soil properties at the analyzed project region. LPI was estimated by addition productive wages ratio of total direct productive cost. Addition productive wages determined by GIS Network analysis GIS Network analysis of working distance between farm house to paddy and each paddy. PPI variation of each the analyzed paddy of Masu and Weoncheon region was 0.967~0.780 respectively, and could be showed relative largely PPI value. PPI will provide basic element for large scaling and gathering of farm land and a substitute lot of farm land consolidation, and will be maximize productivity of paddy.

  • PDF

Scanning Rayleigh Doppler Lidar for Wind Profiling Based on Non-polarized Beam Splitter Cube Optically Contacted FPI

  • Zheng, Jun;Sun, Dongsong;Chen, Tingdi;Zhao, Ruocan;Han, Yuli;Li, Zimu;Zhou, Anran;Zhang, Nannan
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • A Scanning Rayleigh Doppler lidar for wind profiling based on a non-polarized beam splitter cube optically contacted FPI is developed for wind measurement from high troposphere to low stratosphere in 5-35 km. Non-polarized beam splitter cube optically contacted to the FPI are used for a stable optical receiver. Zero Doppler shift correction is used to correct for laser or FPI frequency jitter and drift and the timing sequence is designed. Stability of the receiver for Doppler shift discrimination is validated by measuring the transmissions of FPI in different days and analyzed the response functions. The maximal relative wind deviation due to the stability of the optical receiver is about 4.1% and the standard deviation of wind velocity is 1.6% due to the stability. Wind measurement comparison experiments were carried out in Jiuquan ($39.741^{\circ}N$, $98.495^{\circ}E$), Gansu province of China in 2015, showing good agreement with radiosonde result data. Continuous wind field observation was performed from October 16th to November 12th and semi-continuous wind field of 19 nights are presented.

Structural Assessment of Spastic Hemiplegic Foot using the Foot Posture Index

  • Park, Ji-Won;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.55-59
    • /
    • 2011
  • Purpose: The aims of this study were to assess the degrees of foot abnormalities by comparing foot abnormalities after stroke using the FPI, and to investigate the relationship between the FPI and spasticity. Methods: 33 hemiplegic patients (patient group) and 39 healthy subjects (control group) were evaluated foot posture by the FPI. Spasticity in patient group was measured by the MAS. And the relationship between Foot posture and spasticity in patients group were investigated. Results: Hemiplegic feet in patients were supinated feet compare with non-hemiplegic feet in hemiplegic patients and the foot in control group. The degree of spasticity affected foot posture. Conclusion: Foot posture is related to stroke impairments, stroke patients with more severe spasticity have more severe foot abnormalities as supinated foot.

Assessment of Fire Risk Rating for Wood Species in Fire Event (화재 발생 시 목재 수종의 화재위험성 등급 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.423-430
    • /
    • 2021
  • In order to evaluate the fire risk and fire risk rating of wood for construction materials, this study focused on fire performance index-III (FPI-III), fire growth index-III (FGI-III), and fire risk index-IV (FRI-IV) according to Chung's equations-III and -IV. Western red cedar, needle fir, ash, and maple were used as the specimens. The fire characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment on the specimen. The FPI-III measured after the combustion reaction was 0.86 to 12.77 based on polymethylmethacrylate (PMMA). The FGI-III was found to be 0.63 to 5.26 based on PMMA. The fire rating according to the FRI-IV, which is the fire rating index, was 0.05 to 6.12, and the western red cedar was 122.4 times higher than that of the maple. The fire risk rating according to the FRI-IV increased in the order of maple, ash, needle fir, PMMA and western red cedar. The CO peak concentration of all specimens was measured as 103 to 162 ppm, and it was 2.1 to 3.2 times higher than 50 ppm, the permissible exposure limits of the US occupational safety and health administration. Materials such as western red cedar, which have a low bulk density and contain a large amount of volatile organic substances, have a low FPI-III and a high FGI-III, so they have a high fire risk rating.

The Influence of Pronated Foot Posture on Knee Isokinetic Strength, Static and Dynamic Postural Stability in Healthy Young Individuals

  • Chun, Woochan;Kim, Hee-su;Park, Sieun;Park, Jihea;Shim, Seunghee;Park, Sookyoung
    • Physical Therapy Korea
    • /
    • v.28 no.3
    • /
    • pp.168-176
    • /
    • 2021
  • Background: The foot is a complex body structure that plays an important role in static and dynamic situations. Previous studies have reported that altered foot posture might affect knee joint strength and postural stability, however their relationship still remains unclear. Objects: The purpose of this study was to identify whether pronated foot posture has an influence on knee isokinetic strength and static and dynamic postural stability. Methods: Forty healthy young males aged 18 to 26 years were included. Foot posture was evaluated using the Foot Posture Index-6 (FPI-6), and the subjects were divided into two groups according to their FPI-6 scores: a neutral foot group (n = 20, FPI-6 score 0 to +5) and a pronated foot group (n = 20, FPI-6 score +6 or more). Biodex Systems 3 isokinetic dynamometer was used to evaluate knee isokinetic strength and hamstring to quadriceps ratio at three angular velocities: 60°/sec, 90°/sec, and 180°/sec. The static and dynamic postural stability in a single-leg stance under the eyes-open and eyes-closed conditions were measured with a Biodex Balance System. Results: There were no significant differences between the groups in knee isokinetic strength and static postural stability (p > 0.05), but there was a significant difference in the medial-lateral stability index (MLSI) for dynamic postural stability under the eyes-closed condition (p = 0.022). The FPI-6 scores correlated significantly only with the dynamic overall stability index (OSI) and the MLSI (OSI: R = 0.344, p = 0.030; MLSI: R = 0.409, p = 0.009) under the eyesclosed condition. Conclusion: Participants with pronated foot had poorer medial-lateral dynamic stability under an eyes-closed condition than those without, and FPI-6 scores were moderately positively correlated with dynamic OSI and dynamic MLSI under the eyes-closed condition. These results suggest that pronated foot posture could induce a change in postural stability, but not in knee isokinetic strength.

External Condensation Heat Transfer Coefficients of R245fa on Low Fin and Turbo-C Tubes (낮은 핀관과 Turbo-C 촉진관에서 R245fa의 외부 응축 열전달계수)

  • Shim, Yun-Bo;Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.167-175
    • /
    • 2009
  • In this study, condensation heat transfer coefficients(HTCs) of R22, R123, R134a and R245fa are measured on both 26fpi low fin and Turbo-C tubes. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling of $3{\sim}8^{\circ}C$. Test results show that HTCs of the newly developed low vapor pressure alternative refrigerant, R245fa, are $7.8{\sim}9.2%$ and $10.3{\sim}18.6%$ higher than those of R123 for 26fpi low fin tube and Turbo-C tube respectively. For all refrigerants tested, HTCs of Turbo-C enhanced tube are higher than those of 26fpi low fin tube. For the low fin tube, Beatty and Katz's prediction equation yielded 20% deviation for all fluids. The heat transfer enhancement ratio of R245fa on the Turbo-C tube is $5.9{\sim}6.4$ while that of R123 is $5.7{\sim}5.9$. From the view point of environmental safety and condensation heat transfer, R245fa is a long term candidate to replace R123 currently used in centrifugal chillers.

Suggestion of empirical formula between FPI and specific energy through analysis of subsea tunnel excavation data (해저 터널 굴진자료 분석을 통한 FPI와 비에너지의 경험식 제시)

  • Kim, Kyoung-Yul;Bae, Du-San;Jo, Seon-Ah;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • The construction of subsea tunnel differs from that of inland tunnel because of high water pressure due to sea water level and difficulties to reinforce the ground under construction. Therefore, it is very important to prevent trouble in advance when the subsea tunnel is constructed. In this paper, we established lots of databases about characteristics of geological and mechanical parameters on the construction of subsea tunnel using micro slurry TBM which depth is about 60 m. The correlation analysis is conducted to confirm the effect of thrust, torque and RPM among the excavation database on the net penetration rate. Also, An empirical formula is suggested to predict the net penetration rate through the correlation analysis between FPI (Field Penetration Index) and specific energy from the subsea tunnel excavation database.