• Title/Summary/Keyword: FPDs

Search Result 47, Processing Time 0.019 seconds

Effect of GLUMA desensitizer on the retention of full metal crowns cemented with Rely X U200 self-adhesive cement

  • Lawaf, Shirin;Jalalian, Ezatallah;Roshan, Roshanak;Azizi, Arash
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.404-410
    • /
    • 2016
  • PURPOSE. Considering the importance of retention in the success and long-term clinical service of fixed partial dentures (FPDs) as well as the existing controversy regarding the effect of GLUMA desensitizer on the retention of full metal crowns cemented with RelyX U200 self-adhesive cement, this study aimed to assess the effect of GLUMA desensitizer on the retention of full metal crowns cemented using RelyX U200. MATERIALS AND METHODS. In this experimental study, 20 sound human premolars were prepared; a 0.5 mm chamfer finish line was prepared above the cementoenamel junction. The teeth were randomly assigned to two groups: a desensitizer group (n = 10, treated with GLUMA desensitizer) and a control (n = 10, no surface treatment). Full metal crowns were fabricated of base metal alloy and had a ring. All crowns were cemented with RelyX U200 and subjected to retention test by using a universal testing machine. The data were analyzed using SPSS version 20 and independent t-test. RESULTS. The mean tensile bond strength was significantly higher in the GLUMA desensitizer group ($230.63{\pm}63.8N$) compared to the control group ($164.45{\pm}39.3N$) ($P{\leq}.012$). CONCLUSION. GLUMA desensitizer increases the tensile bond strength of RelyX U200 self-adhesive cement to dentin.

Polish of interface areas between zirconia, silicate-ceramic, and composite with diamond-containing systems

  • Pott, Philipp-Cornelius;Hoffmann, Johannes Philipp;Stiesch, Meike;Eisenburger, Michael
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.315-320
    • /
    • 2018
  • PURPOSE. Fractures, occlusal adjustments, or marginal corrections after removing excess composite cements result in rough surfaces of all-ceramic FPDs. These have to be polished to prevent damage of the surrounding tissues. The aim of this study was to evaluate the roughness of zirconia, silicate-ceramic, and composite after polish with different systems for intraoral use. MATERIALS AND METHODS. Each set of 50 plates was made of zirconia, silicate-ceramic, and composite. All plates were ground automatically and were divided into 15 groups according to the treatment. Groups Zgrit, Sgrit, and Cgrit received no further treatment. Groups Zlab and Slab received glaze-baking, and group Clab was polished with a polishing device. In the experimental groups Zv, Sv, Cv, Zk, Sk, Ck, Zb, Sb, and Cb, the specimens were polished with ceramic-polishing systems "v", "k", and "b" for intraoral use. Roughness was measured using profilometry. Statistical analysis was performed with ANOVA and $Scheff{\acute{e}}$-procedure with the level of significance set at P=.05. RESULTS. All systems reduced the roughness of zirconia, but the differences from the controls Zgrit and Zlab were not statistically significant (P>.907). Roughness of silicate ceramic was reduced only in group Sv, but it did not differ significantly from both controls (P>.580). Groups Cv, Ck, and Cb had a significantly rougher surface than that of group Clab (P<.003). CONCLUSION. Ceramic materials can be polished with the tested systems. Polishing of interface areas between ceramic and composite material should be performed with polishing systems for zirconia first, followed by systems for veneering materials and for composite materials.

Influence of the material for preformed moulds on the polymerization temperature of resin materials for temporary FPDs

  • Pott, Philipp-Cornelius;Schmitz-Watjen, Hans;Stiesch, Meike;Eisenburger, Michael
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.294-301
    • /
    • 2017
  • PURPOSE. Temperature increase of $5.5^{\circ}C$ can cause damage or necrosis of the pulp. Increasing temperature can be caused not only by mechanical factors, e.g. grinding, but also by exothermic polymerization reactions of resin materials. The aim of this study was to evaluate influences of the form material on the intrapulpal temperature during the polymerization of different self-curing resin materials for temporary restorations. MATERIALS AND METHODS. 30 provisonal bridges were made of 5 resin materials: Prevision Temp (Pre), Protemp 4 (Pro), Luxatemp Star (Lux), Structure 3 (Str) and an experimental material (Exp). Moulds made of alginate (A) and of silicone (S) and vacuum formed moulds (V) were used to build 10 bridges each on a special experimental setup. The intrapulpal temperatures of three abutment teeth (a canine, a premolar, and a molar,) were measured during the polymerization every second under isothermal conditions. Comparisons of the maximum temperature ($T_{Max}$) and the time until the maximum temperature ($t_{TMax}$) were performed using ANOVA and Tukey Test. RESULTS. Using alginate as the mould material resulted in a cooling effect for every resin material. Using the vacuum formed mould, $T_{Max}$ increased significantly compared to alginate (P<.001) and silicone (P<.001). In groups Lux, Pro, and Pre, $t_{TMax}$ increased when the vacuum formed moulds were used. In groups Exp and Str, there was no influence of the mould material on $t_{TMax}$. CONCLUSION. All of the mould materials are suitable for clinical use if the intraoral application time does not exceed the manufacturer's instructions for the resin materials.

Optimization of FPD Cleaning System and Processing by Using a Two-Phase Flow Nozzle (이류체 노즐을 이용한 FPD 세정시스템 및 공정 개발)

  • Kim, Min-Su;Kim, Hyang-Ran;Kim, Hyun-Tae;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.429-433
    • /
    • 2014
  • As the fabrication technology used in FPDs(flat-panel displays) advances, the size of these panels is increasing and the pattern size is decreasing to the um range. Accordingly, a cleaning process during the FPD fabrication process is becoming more important to prevent yield reductions. The purpose of this study is to develop a FPD cleaning system and a cleaning process using a two-phase flow. The FPD cleaning system consists of two parts, one being a cleaning part which includes a two-phase flow nozzle, and the other being a drying part which includes an air-knife and a halogen lamp. To evaluate the particle removal efficiency by means of two-phase flow cleaning, silica particles $1.5{\mu}m$ in size were contaminated onto a six-inch silicon wafer and a four-inch glass wafer. We conducted cleaning processes under various conditions, i.e., DI water and nitrogen gas at different pressures, using a two-phase-flow nozzle with a gap distance between the nozzle and the substrate. The drying efficiency was also tested using the air-knife with a change in the gap distance between the air-knife and the substrate to remove the DI water which remained on the substrate after the two-phase-flow cleaning process. We obtained high efficiency in terms of particle removal as well as good drying efficiency through the optimized conditions of the two-phase-flow cleaning and air-knife processes.

Current Research Trend on Recycling of Waste Flat Panel Display Panel Glass (폐 평판디스플레이 패널유리의 재활용 연구 동향)

  • Shin, Dongyoon;Kang, Leeseung;Park, Jae Layng;Lee, Chan Gi;Yoon, Jin-Ho;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2015
  • Although Korea is a top market sharing and world leading producer and developer of flat panel display devices, relevant recycling technology is not up to her prestigious status. Besides, most of the waste glass arising from flat panel displays is currently land-filled. The present paper mainly reviews on development of recycling systems for waste TFT-LCD glass from end-of-life LCD TVs and monitors and TFT-LCD process waste of crushed glass particles with target end uses of raw material for high strength concrete pile and glass fibers, respectively. Waste LCD glass was recycled to fabricate ingredients for high strength concrete piles with enhanced physical properties and spherical foam products. The waste LCD glass recycling technology is already developed to fabricate long and short fibers at commercial level. In view of these, future R & D on waste LCD glass materials is to be directed toward implementation of commercial materials recycling system therefrom.

The Effects of Screw Retained Prosthesis Misfit & Cantilever on Stress Distribution in Bone Around the Implant (나사유지형 임플란트 고정성 보철물의 적합도와 캔틸레버가 지지골조직의 응력분산에 미치는 영향)

  • Lee, Jae-In;Kim, Tae-Young;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.224-235
    • /
    • 2013
  • A passively fitting prosthesis is an essential prerequisite to attain long-lasting success and maintenance of osseointegration. However, true "passive fit" can not be achieved with the present implant-supported prosthesis fabrication protocol. Many clinical situations are suitably treated with cantilevered implant-supported fixed restorations. The purpose of this study was to compare the stress distribution pattern and magnitude in supporting tissues around ITI implants with cantilevered, implant-supported, screw-retained fixed prosthesis according to the fitness of superstructures. Photoelastic model was made with PL-2 resin (Measurements, Raleigh, USA) and three ITI implants (${\phi}4.1{\times}10mm$) were placed in the mandibular posterior edentulous area distal to the canine. Anterior and posterior extended 4-unit cantilevered FPDs were made with different misfit in the superstructures. 4 types of prosthesis were made by placing a $100{\mu}m$ gap between the abutment and the crown on the second premolar and/or the first molar. Photoelastic stress analysis were carried out to measure the fringe order around the implant supporting structure under simulated loading conditions (30 lb).

Flexual strength of resins for provisional fixed prostheses (임시 고정성 보철물 제작용 레진의 굽힘강도)

  • Choi, Myoung-Ah;Ahn, Seung-Geun;Cho, Kuk-Hyeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.3
    • /
    • pp.221-227
    • /
    • 2000
  • Provisional fixed partial dentures(FPDs) are an important part of many prosthodontic treatment procedures. These provisional fixed prostheses must fulfill biologic, mechanical, and esthetic requirements to be considered successful. Consideration of all these factors and requirements are important because provisional resin restorations may be worn over a long period to assess the results of periodontal and endodontics therapies, and also during the restorative phase of implant reconstructive procedures. This in vitro study examined flexual strength of four resins commonly used for fixed provisional prostheses. The effects of polymerization conditions were also evaluated. The four resins tested were : Caulk Temporary bridge resin(L.D. Caulk Co. Dentsply International Millford), Jet(Lang Dental Mfg. Co. Chicago. ILL. U.S.A), Alike (Coe Laboratories. Inc. Chicago. ILL. U.S.A) and Tokuso Curefast (Coe Laboratories. Inc. Chicago. ILL. U.S.A) The test specimens were 65mm long, 14mm wide, and 3.5mm thickness. 10 specimens of four resins were cured for 15 minutes at atmospheric pressure and 10 specimens of four resins were cured at an additional pressure of approximately 20 psi. A total of 80 specimens were prepared. The flexual strength was determined by three-point bending test. Data were analysed with the Paired samples T-test and Tukey student-range test Within the limitations imposed in this study, the following conclusions can be drawn : 1. Under the condition of bench curing, Caulk Temporary bridge resin showed the highest flexual strength. In decreasing order, the flexual strength of the other materials was as follows : Jet, Tokuso Curefast, Alike, and Caulk Temporary bridge resin demonstrated significantly higher strength than other resins. 2. Under the condition of pressure curing, Jet showed the highest flexual strength. In decreasing order, the flexual strength of the other materials was as follows : Caulk Temporary bridge resin, Tokuso Curefast, and Alike. There were all statistically significant differences among four resins 3. There was a statistically significant difference between bench- and pressure-cured specimens in all four materials.

  • PDF