• Title/Summary/Keyword: FPD(Flat Panel Display

Search Result 127, Processing Time 0.028 seconds

High Resolution Analysis for Defective Pixels Detection using a Low Resolution Camera

  • Gibour, Veronique;Leroux, Thierry;Bloyet, Daniel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.856-859
    • /
    • 2002
  • A system for high-resolution analysis of defective elementary cell (R, G or B) on Flat Panel Display (FPD) is described. Based on multiple acquisitions of low-resolution shifted images of the display, our system doesn't require a high-resolution sensor neither tedious alignment of the display, and will remain up to date even facing an important increase of the display dimensions. Our process, highly automated and thus flexible and robust, is expected to perform a full analysis in less than 60s. It is mainly intended for production tests and display classification by manufacturers.

  • PDF

Development of a FPD Stocker with MFC and Object-Oriented Programming (MFC 와 객체지향 프로그래밍을 이용한 FPD Stocker 의 개발)

  • Kim, Sung-Won;Baek, Doo-San;Kim, Suk-Dong;Kim, Woo-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.04a
    • /
    • pp.786-790
    • /
    • 2000
  • FPD Stocker System 은 LCD 를 포함한 평판 디스플레이 소자(FPD : Flat Panel Display)의 자동 자재 저장 반출 장치(FPD Automated Storage and Retrieval System)이다. FPD Stocker System 은 그 특성상 생산라인의 구조에 따라 보유 디바이스와 디바이스의 설정이 다양해 지는 특성이 있다. 본 논문은 새로운 디바이스의 추가가 쉽고, 그 디바이스의 설정이 용이한 구조의 FPD Stocker System 개발을 목적으로 한다. 이를 위하여 각 디바이스를 클래스로 구현하여 개별적인 스레드(Thread)로 Work Crew Threading Model 을 사용하여 동작 시켰다.

  • PDF

Development of Large Sized AM-OLED

  • Lee, Baek-Woon;Kunjal, Parikh;HUh, Jong-Moo;Chu, Chang-Woong;Chung, Kyu-Ha
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.17-18
    • /
    • 2006
  • Flat Panel Displays (FPDs) have made a revolution in the display industry. TFT-LCD (Thin Film Transistor Liquid Crystal Display) has been the main player of FPD for last two decades. As the industry continuously develops the technology for better performance with lower cost is constantly demanded where several post LCD technologies are being developed. One of the prime candidates of post LCD technology is AMOLED (Active Matrix Organic Light Emitting Diode) that is considered to be an ideal FPD due to its extraordinary display performance and potentially low cost display structure. This technology has been accepted to small size display applications, such as cellular phone, PDA and PMP, etc. In this paper it is discussed that how this technology can be extended to large size display applications, such as TV. The technical issues and solutions of TFT backplane and color patterning of OLED materials are discussed and proposed

  • PDF

A Study on High Speed, High Precision Auto-alignment System Using Vision System (비전 시스템을 이용한 고속 고정도 자동 정렬장치 연구)

  • 홍준희;전경한
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.457-460
    • /
    • 1998
  • Recently, the research of the FPD(Flat Panel Display)which is substituted for CRT(Cathode Ray Tube) has been widely progressed. But most equipment that are used for production of FPD are expensive and we must import these equipment. Among these equipment, most important one is a auto-alignment system. In this paper, we present a high speed, high precision auto-alignment system, in which a PLD auto tuning algorithm, 1-dimensional CCD(Dcharge Coupled Device) camera, vision board, and vision data processing algorithm are included.

  • PDF

A trend of the target development for transparent electrode on Flat Panel Display (FPD 투명 도전막용 타겟 개발 동향)

  • Lee, Sang-Cheol;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.20-21
    • /
    • 2007
  • FPD 투명 도전막의 제조에 핵심소재로 사용되는 타겟재의 개발동향을 TCO 물질 중에서 현재 가장 널리 사용되고 있는 ITO 타겟 개발의 관점으로 살펴보았다. ITO 투명 도전막은 다른 TCO 물질에 비해 높은 전기 전도도 및 높은 투과율로 인해 지속적인 사용이 예상되며, 이에 대응 가능한 고밀도 및 고효율 ITO 타겟의 개발이 진행 중이다. 또한 ITO 투명도전막의 우수한 특성에 따라 지속적인 인듐 자원의 수요증가와 이에 따른 인듐 자원의 고갈우려로 ITO 타겟을 대체할 수 있는 대체제의 개발이 진행 중에 있다.

  • PDF

The Design and Implementation of Real Time Contrast Enhancer System for High Resolution FPD (고해상도 FPD를 위한 실시간 Contrast Enhancer System의 설계 및 구현)

  • Seo, Bum-Suk;Choi, Chul-Ho;Kwon, Byeong-Heon
    • Journal of Digital Contents Society
    • /
    • v.5 no.1
    • /
    • pp.79-86
    • /
    • 2004
  • In this paper we implemented the Real Time Contrast Enhancer for image quality enhancement of moving picture. Also we proposed adaptive contrast method that use mean and variance of input video signal. The Designed the contrast Enhancer is measured in comparison with conventional picture and interfaced to 30inch TFT LCD TV of the LG Electronics.

  • PDF

Kinematics and Control of a Visual Alignment System for Flat Panel Displays (평판 디스플레이 비전 정렬 시스템의 기구학 및 제어)

  • Kwon, Sang-Joo;Park, Chan-Sik;Lee, Sang-Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.369-375
    • /
    • 2008
  • The kinematics and control problem of a visual alignment system is investigated, which plays a crucial role in the fabrication process of flat panel displays. The first solution is the inverse kinematics of a 4PPR parallel alignment mechanism. It determines the driving distance of each joint to compensate the misalignment between mask and panel. Second, an efficient vision algorithm for fast alignment mark recognition is suggested, where by extracting essential feature points to represent the geometry of a mark, the geometric template matching enables much faster object recognition comparing with the general template matching. Finally, the overall visual alignment process including the kinematic solution, vision algorithm, and joint control is implemented and experimental results are given.

Laser Thermal Processing System for Creation of Low Temperature Polycrystalline Silicon using High Power DPSS Laser and Excimer Laser

  • Kim, Doh-Hoon;Kim, Dae-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.647-650
    • /
    • 2006
  • Low temperature polycrystalline silicon (LTPS) technology using a high power laser have been widely applied to thin film transistors (TFTs) for liquid crystal, organic light emitting diode (OLED) display, driver circuit for system on glass (SOG) and static random access memory (SRAM). Recently, the semiconductor industry is continuing its quest to create even more powerful CPU and memory chips. This requires increasing of individual device speed through the continual reduction of the minimum size of device features and increasing of device density on the chip. Moreover, the flat panel display industry also need to be brighter, with richer more vivid color, wider viewing angle, have faster video capability and be more durable at lower cost. Kornic Systems Co., Ltd. developed the $KORONA^{TM}$ LTP/GLTP series - an innovative production tool for fabricating flat panel displays and semiconductor devices - to meet these growing market demands and advance the volume production capabilities of flat panel displays and semiconductor industry. The $KORONA^{TM}\;LTP/GLTP$ series using DPSS laser and XeCl excimer laser is designed for the new generation of the wafer & FPD glass annealing processing equipment combining advanced low temperature poly-silicon (LTPS) crystallization technology and object-oriented software architecture with a semistandard graphical user interface (GUI). These leading edge systems show the superior annealing ability to the conventional other method. The $KORONA^{TM}\;LTP/GLTP$ series provides technical and economical benefits of advanced annealing solution to semiconductor and FPD production performance with an exceptional level of productivity. High throughput, low cost of ownership and optimized system efficiency brings the highest yield and lowest cost per wafer/glass on the annealing market.

  • PDF

평판 디스플레이용 고속 인터페이스 기술 동향 및 전망

  • Im, Byeong-Chan;Gwon, O-Gyeong
    • Information Display
    • /
    • v.3 no.3
    • /
    • pp.3-12
    • /
    • 2002
  • FPD(Flat Panel Display; 평판 디스플레이) 시스템에서의 고속 인터페이스 기술은 적용 범주에 따라 호스트 모듈과 디스플레이 모듈간의 인터페이스와 타이밍 제어기와 구동 LSI 간의 인터페이스로 구분된다 현재까지 발표된 FPD용 인터페이스 기술에는 호스트 모듈과 디스플레이 모듈간의 인터페이스 기술로서 LVDS와 TMDS가 있으며, 타이밍 제어기와 구동 LSI 간의 인터페이스로서 RSDS, Mini-LVDS, CMADS, Whisper Bus 가 있다. 본 고에서는 이러한 기술들의 특징 및 장단점에 대해 논하고, 고속 인터페이스 기술의 향후 전망 및 과제를 제시한다.

39.3 Hyper-reality Head Dome Projector $^{TM}$(HDP) for future displays

  • Okumura, Haruhiko;Sasaki, Takashi;Hotta, Aira;Okada, Naotada
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1331-1334
    • /
    • 2008
  • In this paper, we developed a novel hyperreality display called the Head Dome Projector (HDP). The HDP is a head-mounted display consisting of a dome-shaped screen with a very small radius of 40 cm, a mobile projector with ultra-wide projection lens and LED light sources. The main feature of the HDP is very wide viewing angle of 160 degrees horizontally by 120 degrees vertically comparable to the human visual field of view without head tracking and 360 degrees by 360 degrees with head tracking. According to our subjective evaluation comparing the HDP with a flat-panel display (FPD), the HDP realizes hyperreality 2.5 points higher than that realized by an FPD in the case of ${\pm}5$ level evaluation for HD motion images.

  • PDF