Data mining is an effective method of the discovery of useful information such as rules and previously unknown patterns existing in large databases. The discovery of association rules is an important data mining problem. We have developed a new parallel mining called Distributed Frequent Pattern Tree (abbreviated by DFPT) algorithm on a distributed shared nothing parallel system to detect association rules. DFPT algorithm is devised for parallel execution of the FP-growth algorithm. It needs only two full disk data scanning of the database by eliminating the need for generating the candidate items. We have achieved good workload balancing throughout the mining process by distributing the work equally to all processors. We implemented the algorithm on a PC cluster system, and observed that the algorithm outperformed the Improved Count Distribution scheme.
Every port is competing for attracting loyal customers from other ports to achieve more profits stably. This paper proposes a data-mining scheme to facilitate this process. For resolving the problem, the OD (Origination-Destination) data are gathered from the AIS (Automatic Identification System) data. The OD data are clustered according to the arrival dates and ports. The FP-growth algorithm is applied to mine the frequent patterns of ships arriving at ports. Maintaining a loyal customer list for port updates and accuracy is critical in establishing its usefulness. These lists are critical as they can be used to provide suggestions for new products and services to loyal customers. Finally, based on the frequent patterns of the ships and the mode of arrival times, a formula proposed in this paper to derive shipping companies' loyalty to ports was applied. The case of Kaohsiung port was shown as an example of our algorithm, and the OD data of ships in 2017-2018 were processed. Using the results of our algorithm, other rival ports, such as Shanghai or Busan, may attract customers no longer loyal to Kaohsiung ports in the last two years and attract them as new loyal customers.
최근 기업 간 또는 기관 사이의 데이터 공유는 업무 협력을 위해서 필요한 사안이 되고 있다. 이 과정에서 기업이 데이터베이스를 계열회사에 공개했을 때 민감한 정보가 유출되는 문제점이 발행할 수도 있다. 이런 문제를 해결하기 위해서 민감한 정보를 데이터베이스로부터 숨기는 일이 필요하게 되었다. 민감한 정보를 숨기는 이전 연구들은 결과 데이터베이스의 품질을 유지하기 위해 다른 휴리스틱 알고리즘을 적용했다. 그러나 민감한 정보를 숨기는 과정에서 변경되는 항목집합에 대한 영향을 평가하거나 숨겨지는 항목을 최소화하는 연구들은 미흡하였다. 본 논문에서는 민감한 빈발 항목집합을 숨기기 위하여 FP-Tree(Frequent Pattern Tree)기반의 확장 빈발 패턴트리(Extended Frequent Pattern Tree, eFP-Tree)를 제안한다. eFP-Tree의 노드 구성은 기존과는 다르게 빈발 항목집합 생성단계에서 트랜잭션 정보와 민감 정보, 경계 정보를 모두 구성하며, 숨기는 과정에서 비민감한 빈발 항목집합의 영향을 최소화하기 위하여 경계를 사용하였다. 본 논문의 예시 트랜잭션 데이터베이스에 eFP-Tree를 적용한 결과, 손실 항목을 평균 10%이하로 최소화하여 기존 방법들에 비해 효과적임을 증명하였고, 데이터베이스의 품질을 최적으로 유지할 수가 있었다.
Devising an efficient one-pass frequent pattern mining algorithm has been an issue in data mining research in recent past. Pattern growth algorithms like FP-Growth which are found more efficient than candidate generation and test algorithms still require two database scans. Moreover, FP-growth approach requires rebuilding the base-tree while mining with different support counts. In this paper we propose an item-based tree, called I-Tree that not only efficiently mines frequent patterns with single database scan but also provides multiple mining scopes with multiple support thresholds. The 'build-once-mine-many' property of I-Tree allows it to construct the tree only once and perform mining operation several times with the variation of support count values.
현존하는 빈발 패턴 마이닝 방법은 대부분 시간 효율성을 목표로 하고, 물리적 메모리 사용에 매우 의존적이다. 하지만 빅데이터 시대가 도래함에 따라 실제 세상의 데이터베이스는 급속도로 증가하고 있으며, 그에 따라 기존의 방법으로 현실적인 거대한 양의 데이터를 마이닝하기에 물리적 메모리 공간이 부족한 실정이다. 이러한 문제를 해결하기 위해, 빈발 패턴 마이닝의 메모리 의존성을 줄이기 위한 보조저장장치 기반의 연구들이 진행되었으나, 메모리 기반의 방법들에 비해 처리 시간이 너무 많이 소비된다는 한계가 있었다. 따라서 확장성을 가지며, 기존의 디스크 기반의 방법들에 비해 시간효율성을 높인 새로운 빈발 패턴 마이닝이 필요하게 되었다. 본 논문에서는 빅데이터로부터 빈도 아이템 집합들을 마이닝하기 위해 메모리와 디스크를 함께 사용하는 스택 기반의 새로운 접근법인 PPFP 알고리즘을 제안하였다. PPFP는 빈발 패턴 마이닝 접근법 중 가장 인기 있고 효율적인 접근법 중 하나인 FP-growth를 기반으로 하고 있다. PPFP 마이닝 방법은 다음과 같이 두 단계로 진행된다. (1) IFP-tree 구축: FP-tree를 생성한 후, 새로운 인덱스 번호 부여 방법으로 FP-tree의 각 노드에 인덱스 번호를 부여하고, 이 인덱스 번호가 부여된 FP-tree(IFP-tree)를 테이블로 변환하여(IFP-table) 디스크에 저장한다. (2) PPFP 알고리즘을 이용한 빈발 패턴 마이닝: 스택 기반의 PUSH-POP 방식으로 패턴을 확장시켜 나가며 빈발 패턴을 마이닝한다. 이러한 방식을 통해 메모리 기반의 방법에 비해 반복적으로 많은 시간이 소모되는 연산에 매우 적은 양의 메모리를 활용하여 확장성과 함께 시간효율성 또한 향상시킬 수 있었다. 그리고 기존의 연구 방법들과 비교 실험을 통해 새로운 알고리즘의 성능을 증명하였다.
지금까지의 빈발 항목 추출에서는 FP-Tree에 대한 순회와 패턴의 탐색이 필수적인 과정이기 때문에 마이닝 데이터를 트리에 저장하는데 공간이 필요하고 탐색하는데 CPU시간이 필요하기 마련이다. 이러한 단점을 극복하기 위하여 본 논문에서는 조건부 FP-Tree의 의존하지 않고 트랜잭션 데이터의 각 항목들의 위치 정보를 부여하여 트랜잭션 데이터를 2차원의 위치정보 Look-Up테이블로 변환하여 시간과 공간적인 접근성을 용이하게 한다. 또한 항목과 항목의 위치에 대한 매핑배열을 병행하여 시간 복잡도를 줄이는 방법을 고려하는 알고리즘을 제안한다. 실험 결과를 통하여 제안된 방법은 FIMI 저장소 웹 사이트에서 얻은 데이터 세트를 기반으로 많은 실행 시간과 메모리 사용을 줄일 수 있음을 보였다.
데이터마이닝 분야에서 빈발항목집합 탐사에 관한 연구는 활발히 진행되어 왔지만 여전히 많은 메모리 공간과 시간을 필요로 한다. 특히 apriori 알고리즘에 기반한 방법들은 긴 패턴이 생성될수록 지수적으로 시간과 공간이 증가한다. 최근에 발표된 fp-growth는 일반적인 데이터 집합에서 우수한 성능을 보이나 희소 데이터 집합에서 효율적인 성능을 보여주지 못한다. 본 논문에서는 길이가 2인 빈발항목집합 L2에 기반한 L2-tree 구조를 제안한다. 또한 L2-tree에서 빈발항목집합을 탐사하는 L2-traverse 알고리즘을 제안한다. L2-tree는 L2를 기반으로 하기 때문에 L2가 상대적으로 적은 희소 데이터 집합 환경에서 적은 메모리 공간을 사용하게 된다. L2-traverse 알고리즘은 별도의 추출 데이터베이스를 생성하는 FP-growth와 달리 단순히 L2-tree를 오직 한번의 깊이 우선 탐사를 통해 빈발항목집합을 찾는다. 최적화 기법으로써 길이가 3인 빈발항목집합 L3가 되지 않는 L2 패턴들을 미리 제거하는 방법으로 C3-traverse 알고리즘을 제안하며 실험을 통해 기존 알고리즘과 비교 검증한다.
Nowadays, cloud computing is being adopted for more organizations. However, since cloud computing has a virtualized, volatile, scalable and multi-tenancy distributed nature, it is challenging task to perform attack detection in the cloud following conventional processes. This work proposes a solution which aims to collect web server logs by using Flume and filter them through Spark Streaming in order to only consider suspicious data or data related to denial-of-service attacks and reduce the data that will be stored in Hadoop Distributed File System for posterior analysis with the frequent pattern (FP)-Growth algorithm. With the proposed system, we can address some of the difficulties in security for cloud environment, facilitating the data collection, reducing detection time and consequently enabling an almost real-time attack detection.
유전자들의 그룹은 복잡한 상호작용들을 통해 세포의 기능이 조절되며 이러한 상호작용을 하는 유전자 그룹들을 유전자 조절 네트워크 (GRNs: Gene Regulatory Networks)라고 한다. 이전의 유전자 발현 분석 기법인 군집화와 분류는 단지 상동성에 의한 유전자들 사이의 소속을 결정하는 데에는 유용하나 분자 활동에서의 같은 클래스에서 발견되어지는 유전자들 사이의 조절 관계를 식별할 수 없다. 더욱이 유전자들이 어떻게 연관되는 지와 유전자들이 서로 어떻게 조절하는지에 대한 매커니즘의 이해가 필요하다. 따라서 이 논문에서는 시계열 마이크로어레이 데이터로부터의 유전자들의 조절 관계를 발견하기 위해서 빈발 패턴 마이닝과 연쇄 규칙을 이용한 새로운 접근법을 제안하였다. 이 기법에서는 먼저, 빈발 패턴 마이닝 적용을 위한 적절한 데이터 변환 방법을 제안하였고 FP-growth을 이용하여 유전자 발현 패턴들을 발견한다. 그런 다음, 연쇄 규칙을 이용하여 빈발한 유전자 패턴들로부터 유전자 조절 네트워크를 구축하였다. 마지막으로 제안된 기법의 검증은 공개된 유전자들의 조절 관계와 실험 결과의 일치함을 보임으로써 평가하였다.
유틸리티 패턴 마이닝은 데이터 항목에 대한 다른 가중치를 고려할 수 있는 장점으로 인하여 비즈니스 데이터를 분석하는 환경에서 효율적으로 이용되고 있다. 그러나 기존의 빈발 패턴(Frequent Pattern) 마이닝에서의 Apriori 규칙을 그대로 적용하기 어려운 문제점으로 인하여 패턴 마이닝의 성능이 현저하게 떨어지고 있다. 본 연구는 Prefix-tree를 이용하여 지속적으로 증가하는 비즈니스 트랜잭션 데이터베이스에 대한 유틸리티 패턴 마이닝을 효과적으로 수행하기 위한 기법을 제안한다. 제안하는 기법은 Prefix-tree의 각 항목 노드에 유틸리티 값을 저장하여 FP-Growth 알고리즘에서와 같이 트리의 상향 탐색을 통하여 높은 유틸리티 패턴을 빠르게 찾아낸다. 여러 형태의 실험을 통하여 이용할 수 있는 세가지 다른 Prefix-tree 구조들 간의 성능적 특징과 패턴 탐색의 방법들을 비교하였으며 실험 결과에 따라 제안하는 기법이 기존의 기법들에 비해 많은 성능 향상을 가져올 수 있는 것을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.