• 제목/요약/키워드: FORWARD AND BACKWARD WALKING

검색결과 44건 처리시간 0.023초

4족 보행 로봇의 효율적인 비주기 정적 보행 알고리즘 (An Efficient Apeliodic Static Walking Algorithm for Quadrupecl Walking Machine)

  • 정경민;박윤창
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.42-42
    • /
    • 2000
  • This paper concerns an efficient aperiodic static crab walking algorithm for quadruped walking machine in rough terrain. In this algorithm, the requirements for forward stability margin and backward stability margin could be given differently in order to consider the slope of terrain and disturbances resulting from moving velocity. To restrict the searing regions for motion variables, such as moving distances until a leg is lifted or is placed, the standard leg transferring sequence is decided to be that of wave gaits. standard support pattern is also proposed that enables the quadruped to continue forward motion using the standard leg transferring sequence without falling into deadlock.

  • PDF

휴머노이드 로봇의 전방향 이족보행 원격제어를 위한 안드로이드 애플리케이션 개발 (Development of Android Application for Wireless Control of Omnidirectional Biped Walking of Humanoid Robot)

  • 박규영;윤재훈;최영림;김종욱
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.223-231
    • /
    • 2014
  • Humanoid robot is the most suitable robot platform for effective human interaction and various intelligent services. The present work addresses development of real time wireless control application of humanoid robot's forward and backward walks, and turning in walking. For convenience of human users, the application is developed on Android OS (Operating System) working on his or her smartphone. To this end, theoretic background on various-directional biped walking is proposed based on joint trajectories for forward walking, which have been shaped with a global optimization method. In this paper, backward walking is scheduled by interchange of angles and angular velocities and additional change of signs in angular velocities at all the via-points connecting cubic polynomial trajectories. Turning direction in walking is also implemented by activating the transversal hip joint initially located in the support leg in two stages. After validation of the proposed walking schemes with Matlab simulator, a smartphone application for the omnidirectional walking has been developed to control a humanoid robot platform named DARwIn-OP interconnected via Wi-Fi. Experiment result of the present wireless control of a humanoid robot with smartphone is successful, and the application will be released in application market near future.

Differences in the Gait Pattern and Muscle Activity of the Lower Extremities during Forward and Backward Walking on Sand

  • Kwon, Chae-Won;Yun, Seong Ho;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • 제34권1호
    • /
    • pp.45-50
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the spatiotemporal and kinematic gait parameters and muscle activity of the lower extremities between forward walking on sand (FWS) and backward walking on sand (BWS) in normal adults. Methods: This study was conducted on 13 healthy adults. Subjects performed FWS and BWS and the spatiotemporal and kinematic gait parameters of stride time, stride length, velocity, cadence, step length, stance, swing, double support, and hip range of motion (ROM), knee ROM were measured by a wearable inertial measurement unit system. In addition, the muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GA) was measured. Results: The stride length, stride velocity, cadence, and step length in the BWS were significantly lower than FWS (p<0.05), and stride time was significantly greater (p<0.05). However, there was no significant difference in the ratio of stance, swing, and double support between the two (p>0.05). The kinematic gait parameters, including hip and knee joint range of motion in BWS, were significantly lower than FWS (p<0.05). The muscle activity of the RF in BWS was significantly higher than FWS (p<0.05), but the muscle activity of the BF, TA, GA did not show any significant differences between the two movements (p>0.05). Conclusion: A strategy to increase stability by changing the gait parameters is used in BWS, and this study confirmed that BWS was a safe and effective movement to increase RF muscle activity without straining the joints. Therefore, BWS can be recommended for effective activation of the RF.

리듬청각자극을 이용한 후방 보행 훈련이 뇌졸중 환자의 보행과 균형에 미치는 영향 (The Effects of Backward Walking with Rhythmic Auditory Stimulation on Gait and Balance in Patients with Stroke)

  • 현동수;최종덕
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6237-6245
    • /
    • 2013
  • 본 연구는 리듬청각자극을 이용한 후방 보행 훈련이 뇌졸중 환자의 보행과 균형에 미치는 영향을 알아보기 위한 것으로 21명의 뇌졸중 환자를 무작위로 세 집단으로 나누었고, 실험군I은 전방 보행 훈련 군, 실험군II은 후방 보행 훈련군, 실험군III은 리듬청각자극을 이용한 후방 보행 훈련 군으로 집단마다 7명씩 실험하였다. 실험은 3주간 주 5회 30분씩 실시하였으며 실험 전과 3주간의 실험 후에 각 실험군의 10m 보행 검사, 일어나 걸어가기 검사, 기능적 팔 뻗기 검사를 하였고, biodex gait trainer 2를 사용하여 활보장과 보장비대칭 비를 측정하였다. 연구의 결과 각 군내의 실험 전 후 비교에서 보행속도, 보행대칭성, 균형에 유의한 차이를 보였고(p<.05), 변화량을 비교했을 때 모두 유의한 차이를 보였으며(p<.05), 보행속도, 보행대칭성과 균형에서는 실험군III, 실험군II, 실험군I 순으로 효과적이였고, 활보장에서는 실험군II와 실험군III이 실험군I보다 효과적이였다. 이 결과를 통하여 뇌졸중 환자를 대상으로 보행 운동을 실시할 때 리듬청각자극을 이용한 후방 보행 훈련이 보행속도, 보행대칭성과 균형의 향상에 있어서 효과적인 방법임을 알 수 있다.

The Effect of Balance between General Walking Exercise and Power Walking Exercise

  • Kim, Shin Gyun;Kim, Chang Sook
    • 국제물리치료학회지
    • /
    • 제4권2호
    • /
    • pp.566-572
    • /
    • 2013
  • This study aims to compared effect of balance between general walking exercise and power walking exercise. Twenty subjects were classified into two groups, general walking exercise(n=10) and power walking exercise(n=10). As a result, two group showed difference within the group and there is significant difference between two groups. 1) In compared static balance of sway area at pre-post test to exercise group, general walking exercise group did not change significantly. however, power walking exercise group did change significantly. and At sway distance, two group showed significant changes. 2) In compared Static balance between the groups sway area and sway path at pre-post test, two group showed significant changes. 3) In compared dynamic balance of center distance at pre-post test to exercise group, general walking exercise group was no significant difference in all directions. power walking exercise group was significant difference in all directions. 4) In compared dynamic balance between the groups sway area and sway path at pre-post test, there was no significant difference in leftward, rightward, forward directions and was significant difference in backward, overall direction. Therefore, power walking exercise can be recommended promote balance.

랜덤화된 트리워킹 알고리즘에서의 RFID 태그 보안을 위한 백워드 채널 보호 방식 (Backward Channel Protection Method For RFID Tag Security in the Randomized Tree Walking Algorithm)

  • 최원준;노병희;유승화;오영철
    • 한국통신학회논문지
    • /
    • 제30권5C호
    • /
    • pp.415-421
    • /
    • 2005
  • 수동형 RFID 태그는 스스로 전력을 갖고 있지 않기 때문에 연산 능력이 매우 미약하고, 통신 신호는 크기가 약하고, 도달 거리가 짧다. 이런 특성을 이용하여, 대부분의 태그 보안 방법은 태그로부터 리더로 전달되는 무선경로인 백워드(Backward) 채널은 도청의 가능성이 거의 없다는 가정하에 리더로부터 태그로 정보를 전달하는 포워드(Forward) 채널을 보호하는데 초점을 맞추고 있다. 그러나, 실제로 태그와 가까이에 있는 불법적인 리더는 정보를 불법적으로 수집할 수 있다. 본 논문에서는 이러한 근접거리에서 백워드 채널을 보호할 수 있는 방법을 제안한다. 제안방법은 태그정보의 충돌방지를 위하여 제안된 트리워킹 방식의 도청가능성을 제거하기 위하여 제안된 랜덤화된 트리워킹과 같은 기존 방식들에서 문제점을 해결하여 준다. 제안 방법의 효율성은 분석 모델을 사용하여 보였으며, 표준 코드시스템인 EPCglobal, ISO, uCode의 경우 도청가능성을 거의 '0'에 근접시킴을 보였다.

Effect of backward walking training using an underwater treadmill on muscle strength, proprioception and gait ability in persons with stroke

  • Kum, Dong-Min;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • 제6권3호
    • /
    • pp.120-126
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effects of backward treadmill gait training between underwater and ground environments on strength, proprioception, and walking ability in persons with stroke. Design: Randomized control trial. Methods: Twenty eight subjects participated in the study in which they were randomly assigned to either the underwater backward treadmill training (UBTT) group (n=13) or the BTT group (n=15). In both groups, forward gait training was performed for 20 minutes on the ground treadmill. The UBTT group performed backward gait on an underwater treadmill for 20 minutes while the BTT group performed backward gait on a ground treadmill for 20 minutes. The gait training in each group was performed twice a week for a total of six weeks. Muscle strength, proprioception, and gait ability was assessed using a digital power meter, joint angle recurrence method using the smartphone protractor application, the Figure-of-Eight walk test (F8W) and the functional gait assessment (FGA) respectively. Results: Both groups showed significant improvement in strength, F8W and FGA scores after training (p<0.05). However, there was no statistically significant difference between the two groups. Both groups showed significant improvement in proprioception after training (p<0.05). In the comparison between the two groups, there was a greater significant change in the UBTT group for joint proprioception (p<0.05). Conclusions: In this study, it was found that both backward treadmill gait training programs were effective on strength, proprioception, and gait ability, and that underwater training was particularly effective on proprioception compared to ground training.

6족 보행로봇에 관한 기초연구 (A Basic Study of Hexapod Walking Robot)

  • 강동현;민영봉;반전훈구;매전간웅
    • Journal of Biosystems Engineering
    • /
    • 제32권5호
    • /
    • pp.339-347
    • /
    • 2007
  • A hexapod walking robot had been developed for gathering information in the field. The developed robot was $260{\times}260{\times}130$ ($W{\times}L{\times}H$, mm) in size and 14.7 N in weight. The legs had nineteen degrees of freedom. A leg has three rotational joints actuated by small servomotors. Two servomotors placed at ankle and knee played the roles of vertical joint for up and down motions of the leg and the other one placed at coxa played the role of horizontal joint for forward and backward motions. In addition, a servomotor placed at thorax between the front legs and the middle legs played the role of vertical joint for pumping the two front legs to climb stair or inclination. Walking motion of the robot was executed by tripod gait. The robot was controlled by manual remote-controller communicated by an infrared ray. Two controllers were equipped to control the walking of the robot. The sub-controller using PIC microcomputer (Microchips, PIC16F84A) received the 16 bit command signal from the manual remote controller, decoded it to 8bit and transmitted it to the main microcomputer (RENESAS, SH2/7045), which controlled the 19 servomotors using the PWM command signals. Walking speeds were controlled by adjusting the period of command cycle and the stride. Forward walking speed were within 100 cm/min to 300 cm/min. However, experimental walking speed had the error of 4-40 cm/min to compare with the theoretical one, because of slippage of the leg and the circular arc motion of servomotor of coxa.

Relationships Between Cognitive Function and Gait-Related Dual-Task Interference After Stroke

  • Kim, Jeong-Soo;Jeon, Hye-Seon;Jeong, Yeon-Gyu
    • 한국전문물리치료학회지
    • /
    • 제21권3호
    • /
    • pp.80-88
    • /
    • 2014
  • Previous studies have reported that decreased cognitive ability has been consistently associated with significant declines in performance of one or both tasks under a dual-task walking condition. This study examined the relationship between specific cognitive abilities and the dual-task costs (DTCs) of spatio-temporal gait parameters in stroke patients. The spatio-temporal gait parameters were measured among 30 stroke patients while walking with and without a cognitive task (Stroop Word-Color Task) at the study participant's preferred walking speed. Cognitive abilities were measured using Computerized Neuropsychological Testing. Pearson's correlation coefficients (r) were calculated to quantify the associations between the neuropsychological measures and the DTCs in the spatio-temporal gait parameters. Moderate to strong correlations were found between the Auditory Continuous Performance test (ACPT) and the DTCs of the Single Support Time of Non-paretic (r=.37), the Trail Making A (TMA) test and the DTCs of Velocity (r=.71), TMA test and the DTCs of the Step Length of Paretic (r=.37), TMA test and the DTCs of the Step Length Non-paretic (r=.36), the Trail Making B (TMB) test and the DTCs of Velocity (r=.70), the Stroop Word-Color test and the DTCs of Velocity (r=-.40), Visual-span Backward (V-span B) test and the DTCs of Velocity (r=-.41), V-span B test and the DTCs of the Double Support Time of Non-paretic (r=.38), Digit-span Forward test and the DTCs of the Step Time of Non-paretic (r=-.39), and Digit-span Backward test and the DTCs of the Single Support Time of Paretic (r=.36). Especially TMA test and TMB test were found to be more strongly correlated to the DTCs of gait velocity than the other correlations. Understanding these cognitive features will provide guidance for identifying dual- task walking ability.