• Title/Summary/Keyword: FOREST CLASSIFICATION

Search Result 1,056, Processing Time 0.029 seconds

Development of the forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data

  • Sasakawa, Hiroshi;Tsuyuki, Satoshi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.467-469
    • /
    • 2003
  • This research aimed to develop forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data. QuickBird data was used as satellite data. The method of this research was to extract satellite data for every single tree crown using image segmentation technique, then to evaluate the accuracy of classification by changing grouping criteria such as tree species, families, coniferous or broad-leaved species, and timber prices. As a result, the classification of tree species and families level was inaccurate, on the other hand, coniferous or broad-leaved species and timber price level was high accurate.

  • PDF

Mapping of Vegetation Cover using Segment Based Classification of IKONOS Imagery

  • Cho, Hyun-Kook;Lee, Woo-Kyun;Lee, Seung-Ho
    • The Korean Journal of Ecology
    • /
    • v.26 no.2
    • /
    • pp.75-81
    • /
    • 2003
  • This study was performed to prove if the high resolution satellite imagery of IKONOS is suitable for preparing digital vegetation map which is becoming increasingly important in ecological science. Seven classes for forest area and five classes for non-forest area were taken for classification. Three methods, such as the pixel based classification, the segment based classification with majority principle, and the segment based classification with maximum likelihood, were applied to classify IKONOS imagery taken in April 2000. As a whole, the segment based classification shows better performance in classifying the high resolution satellite imagery of IKONOS. Through the comparison of accuracies and kappa values of the above 3 classification methods, the segment based classification with maximum likelihood was proved to be the best suitable for preparing the vegetation map with the help of IKONOS imagery. This is true not only from the viewpoint of accuracy, but also for the purpose of preparing a polygon based vegetation map. On the basis of the segment based classification with the maximum likelihood, a digital vegetation map in which each vegetation class is delimitated in the form of a polygon could be prepared.

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF

Wood Species Classification Utilizing Ensembles of Convolutional Neural Networks Established by Near-Infrared Spectra and Images Acquired from Korean Softwood Lumber

  • Yang, Sang-Yun;Lee, Hyung Gu;Park, Yonggun;Chung, Hyunwoo;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.385-392
    • /
    • 2019
  • In our previous study, we investigated the use of ensemble models based on LeNet and MiniVGGNet to classify the images of transverse and longitudinal surfaces of five Korean softwoods (cedar, cypress, Korean pine, Korean red pine, and larch). It had accomplished an average F1 score of more than 98%; the classification performance of the longitudinal surface image was still less than that of the transverse surface image. In this study, ensemble methods of two different convolutional neural network models (LeNet3 for smartphone camera images and NIRNet for NIR spectra) were applied to lumber species classification. Experimentally, the best classification performance was obtained by the averaging ensemble method of LeNet3 and NIRNet. The average F1 scores of the individual LeNet3 model and the individual NIRNet model were 91.98% and 85.94%, respectively. By the averaging ensemble method of LeNet3 and NIRNet, an average F1 score was increased to 95.31%.

Soft Independent Modeling of Class Analogy for Classifying Lumber Species Using Their Near-infrared Spectra

  • Yang, Sang-Yun;Park, Yonggun;Chung, Hyunwoo;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.101-109
    • /
    • 2019
  • This paper examines the classification of five coniferous species, including larch (Larix kaempferi), red pine (Pinus densiflora), Korean pine (Pinus koraiensis), cedar (Cryptomeria japonica), and cypress (Chamaecyparis obtusa), using near-infrared (NIR) spectra. Fifty lumber samples were collected for each species. After air-drying the lumber, the NIR spectra (wavelength = 780-2500 nm) were acquired on the wide face of the lumber samples. Soft independent modeling of class analogy (SIMCA) was performed to classify the five species using their NIR spectra. Three types of spectra (raw, standard normal variated, and Savitzky-Golay $2^{nd}$ derivative) were used to compare the classification reliability of the SIMCA models. The SIMCA model based on Savitzky-Golay $2^{nd}$ derivatives preprocessing was determined as the best classification model in this study. The accuracy, minimum precision, and minimum recall of the best model (PCA models using Savitzky-Golay $2^{nd}$ derivative preprocessed spectra) were evaluated as 73.00%, 98.54% (Korean pine), and 67.50% (Korean pine), respectively.

Applicability of Supervised Classification for Subdividing Forested Areas Using SPOT-5 and KOMPSAT-2 Data (산림지역 분류를 위한 SPOT-5 및 KOMPSAT-2 영상의 감독분류 적용성)

  • Choi, Jaeyong;Lee, Sanghyuk;Lee, Sol Ae;Ji, Seung Yong;Lee, Peter Sang-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.89-104
    • /
    • 2015
  • In order to effectively manage forested areas in South Korea on a national scale, using remotely sensed data is considered most suitable. In this study, utilizing Land coverage maps and Forest type maps of national geographic information instead of collecting field data was tested for conducting supervised classification on SPOT-5 and KOMPSAT-2 imagery focusing on forested areas. Supervised classification were conducted in two ways: analysing a whole area around the study site and/or only forested areas around the study site, using Support Vector Machine. The overall accuracy for the classification on the whole area ranged from 54.9% to 68.9% with kappa coefficients of over 0.4, which meant the supervised classification was in general considered moderate because of sub-classifying forested areas into three categories (i.e. hardwood, conifer, mixed forests). Compared to this, the overall accuracy for forested areas were better for sub-classification of forested areas probably due to less distraction in the classification. To further improve the overall accuracy, it is needed to gain individual imagery rather than mosaic imagery to use more spetral bands and select more suitable conditions such as seasonal timing. It is also necessary to obtain precise and accurate training data for sub-classifying forested areas. This new approach can be considered as a basis of developing an excellent analysis manner for understanding and managing forest landscape.

Development of Evaluation Indices for Forest Landscape Classification (산림경관 등급화를 위한 평가지표 개발)

  • Kang, Mi-Hee;Kim, Seong-Il
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.777-784
    • /
    • 2010
  • The purpose of this study was to develop evaluation indices for forest landscape classification. The indices were chosen to enable forest managers to establish effective landscape management strategies through three times of focus group interviews and email survey with experts. The 13 landscape evaluation indices were finally divided into four categories. They were ecological health (degree of green naturality, degree of ecological naturality, disease and insect damage, crown vitality), aesthetic visual quality (naturalness, harmony, diversity, traditionality, aesthetic appreciation, rarity), and sensitivity (level of tourism/recreational use), interruptions (damaged land, artificial structures). The five-level was suggested for the forest landscape classification system.

An Empirical Study on Discrimination of Image Algorithm for Improving the Accuracy of Forest Type Classification -Case of Gyeongju Area Using KOMPSAT-MSC Image Data- (임상 분류 정확도 향상을 위한 영상 알고리즘 변별력 실증 연구 -KOMPSAT-MSC를 이용한 경주지역을 대상으로-)

  • Jo, Yun-Won;Kim, Sung-Jae;Jo, Myung-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.55-60
    • /
    • 2009
  • By applying NDVI(Normalized Difference Vegetation Index) and TCT(Tasseled-Cap Transformation) image algorithm on the basis of KOMSAP-2 MSC(Multi Spectral Camera) image(Jun. 12, 2007) for Naenam-myeon, Gyeongju city in this study, DN distribution map was drawn up. Discrimination analysis of image algorithm for the accuracy improvement of forest type classification was conducted through the comparative analysis between the distribution maps of NDVI and TCT DN, and forest field surveying data, and finally, the accuracy of the forest type classification was verified through the overlay analysis with the forest field surveying data. Through this study, it is thought that low cost and high efficiency will be able to be expected in the process of the examination for the automation practicality of the forest type classification and of the production of the accurate forest type classification map by using KOMPSAT-2 MSC image.

  • PDF

Unsupervised Classification of Forest Vegetation in the Mt. Wolak Experimental Forest Using Landsat Thematic Mapper Data (Landsat Thematic Mapper 화상자료를 이용한 월악산 지역 산림식생의 무감독분류)

  • Lee, Sang Hee;Park, Jae Hyeon;Lee, Joon Woo;Kim, Je Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.36-44
    • /
    • 2001
  • The main purpose of this study was to classify forest vegetation effectively using Landsat Thematic Mapper data(June, 1994) in mountainous region. The research area was the Mt. Wolak Experimental Forest of Chungbuk National University, near Chungju and Jecheon city, Chungcheongbuk-do. To classify forest vegetation effectively, Normalized Difference Vegetation Index(NDVI) was used to reduce topographic effects. This NDVI was modified and transformed to the value of 0 to 255, and then the modified values were combined with other Landsat Thematic Mapper bands. To classify forest and land cover types, unsupervised classification method was used. The results of this study are summarized as follows. 1. Combinations of band "3, 5, NDVI" in Landsat Thematic Mapper data showed a good separation with high accuracy. The expected classification accuracy was 95.1% in Landsat Thematic Mapper data. 2. The Land Cover types were classified into six groups : coniferous forest, deciduous forest, mixed forest, paddy and grass, non-forest, and other undetectable areas. As these classified results were compared with the reconnaissance survey and aerial black and white infrared photographs, the overall classification accuracy was 76.5% in Landsat Thematic Mapper data. 3. The portion of non-forest in Mt. Wolak area was 1.9%. The percentages of coniferous, deciduous and mixed forests were 30.9%, 35.7% and 26.4%, respectively. 4. As these classified results were compared with other reference data, the percentages of coniferous, deciduous and mixed forests increased, but the portion of non-forest was exceedingly diminished. These differences are thought to be from the different research method and the different season of received Landsat Thematic Mapper data.

  • PDF

Detection of Trees with Pine Wilt Disease Using Object-based Classification Method

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.384-391
    • /
    • 2016
  • In this study, regions infected by pine wilt disease were extracted by using object-based classification method (OB-infected region), and the characteristics of special distribution about OB-infected region were figured out. Scale 24, Shape 0.1, Color 0.9, Compactness 0.5, and Smoothness 0.5 was selected as the objected-based, optimal weighted value of OB-infected region classification. The total accuracy of classification was high with 99% and Kappa coefficient was also high with 0.97. The area of OB-infected region was approximately 90 ha, 16% of the total area. The OB-infected region in Age class V and VI was intensively distributed with 97% of the total. Also, The OB-infected region in Middle and Large DBH class was intensively distributed with 99% of the total. In terms of the topographic characteristics of OB-infected region, the damages occurred approximately 86% below the altitude of 200 m, and occurred 91% with a slope less than 10 degree. The damage occurred a lot in low hilly mountain and undulating slope. In addition, the accessibility to road and residential area from OB-infected region was less than 300 m in large part. Overall, it was figured out that artificial effect is stronger than natural effect with regard to the spread of pine wilt disease.