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Soft Independent Modeling of Class Analogy for Classifying 

Lumber Species Using Their Near-infrared Spectra1

Sang-Yun Yang2⋅Yonggun Park2,3⋅Hyunwoo Chung2⋅Hyunbin Kim2⋅Se-Yeong Park2,3⋅
In-Gyu Choi2,3,4⋅Ohkyung Kwon5⋅Hwanmyeong Yeo 2,3,†

ABSTRACT1)

This paper examines the classification of five coniferous species, including larch (Larix kaempferi), red pine (Pinus 
densiflora), Korean pine (Pinus koraiensis), cedar (Cryptomeria japonica), and cypress (Chamaecyparis obtusa), using 

near−infrared (NIR) spectra. Fifty lumber samples were collected for each species. After air−drying the lumber, the 

NIR spectra (wavelength = 780−2500 nm) were acquired on the wide face of the lumber samples. Soft independent 

modeling of class analogy (SIMCA) was performed to classify the five species using their NIR spectra. Three types 

of spectra (raw, standard normal variated, and Savitzky−Golay 2nd derivative) were used to compare the classification 

reliability of the SIMCA models. The SIMCA model based on Savitzky−Golay 2nd derivatives preprocessing was 

determined as the best classification model in this study. The accuracy, minimum precision, and minimum recall of 

the best model (PCA models using Savitzky−Golay 2nd derivative preprocessed spectra) were evaluated as 73.00%, 

98.54% (Korean pine), and 67.50% (Korean pine), respectively.

Keywords: near−infrared spectroscopy, soft independent modeling of class analogy, non−destructive species 
classification, lumber classification, domestic species

1. INTRODUCTION

Lumber is used in various applications, such as 

structure, furniture, and packaging that require good 

physical properties. The species is an important factor 

in lumber’s performance. Thus, it is traded at different 

prices for each species. Lumber species identification 

is an important process for ensuring market reliability. 

However, traditional species identification methods, 

such as anatomical analysis or DNA analysis, are not 

easily applicable. Both approaches, which are promising 

in lumber species identification, inevitably require 

cutting and processing specimens into a suitable form 

for examination. The test procedures take a long time 
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and cost. In addition, skilled experts are essential to 

analyze lumber species but they are a few in Korea. 

In field, visual species identification is preferred but 

it is based on subjective judgments of inspector and 

is applicable only limited species. To overcome the 

above－mentioned problems, alternative species 

identification techniques, such as machine vision 

(Hermanson and Wiedenhoeft, 2011; Hafemann et al., 
2014; Kwon et al., 2017) and near－infrared (NIR) 

spectroscopy (Adedipe et al., 2008; Russ et al., 2009; 

Nisgoski et al., 2017; Park et al., 2017), have been 

reported. This study applies simple and non－destructive 

species classification based on NIR spectroscopy. 

NIR spectroscopy is a type of analytical method that 

characterizes the chemical composition of a material. 

NIR rays are electromagnetic waves of wavelength 

range from 780 nm to 2,500 nm that have a sufficient 

energy level to vibrate molecular functional groups. 

The advantages of NIR spectroscopy are its non－

destructive testing and rapid measurement capabilities 

(Blanco, 2002; Pasquini, 2003; Porep et al., 2015). In 

wood science, NIR application has been widely studied 

to determine the wood’s physical properties (Schimleck 

and Evans, 2003; Jiang et al., 2006; Yang et al., 2017), 

chemical aspects (Alves et al., 2006; Watanabe et al., 
2006; Üner et al., 2011; Cho et al., 2016), mechanical 

strength (Thumm and Meder, 2001; Zhao et al., 2009; 

Hovarth et al., 2011), and moisture content (Thygesen 

and Lundqvist, 2000; Eom et al., 2010; Chang et al., 
2015; Yang et al., 2015). In this context, some 

classification studies using NIR spectroscopy have 

recently been reported because chemical composition 

varies by species. However, there are few reports of 

the lumber classification among domestic species 

(Hwang et al., 2015).

This study examines NIR spectroscopy with soft 

independent modeling of class analogy (SIMCA) to 

classify five domestic lumber species. SIMCA (Wold, 

1976) is a statistical classification method for supervised 

pattern recognition and is widely applied in fields, such 

as chemometrics. NIR spectra acquired from lumbers 

were used for SIMCA modeling, and the classification 

reliability of each model was then evaluated. 

 

2. MATERIALS and METHODS

2.1. Sample preparation

Fifty green lumbers of each species [larch (Larix 
kaempferi), red pine (Pinus densiflora), Korean pine 

(Pinus koraiensis), cedar (Cryptomeria japonica), and 

cypress (Chamaecyparis obtusa)], of dimensions 50 × 

100 × 600 mm (thickness × width × length, R or T 

× L direction), were collected from several National 

Forestry Cooperative Federations located throughout 

Korea (Table 1). These five species accounted for the 

majority of the log supplied to the domestic lumber 

production industry. Each sample was air－dried at 25°C 

and 65 ± 10% relative humidity for 3 months. After 

air drying (10－15% moisture content), lumbers were 

planed (2 mm thickness) for NIR measurement. 

 

Species

Location
Larch

Red 
pine

Korean 
pine

Cedar Cypress

Yeoju 10 0 0 0 0

Gapyeong 10 20 50 0 0

Donghae 10 10 0 0 0

Naju 10 20 0 10 10

Namwon 10 0 0 10 20

Seogwipo 0 0 0 30 20

Table 1. The number of lumber samples collected from
several National Forestry Cooperative Federations

2.2. Acquisition of near-infrared (NIR) 
spectra

All NIR absorbance spectra were acquired using a 

SpectraStar 2600 XT－R spectrometer (Unity Scientific, 

US). The NIR absorbance spectra were collected at 1 
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nm intervals over the wavelength range 780 to 2,500 

nm from the heartwood on the lumber’s widest face. 

In total, twelve scans were averaged into a single 

spectrum. The lumbers were placed on the NIR 

acquisition window (25 × 40 mm) of the spectrometer 

and then five spectra were obtained at different points 

on the same face. After NIR acquisition, a 2 mm 

thickness was planed, and this process was repeated 

four times. Thus, the NIR spectra were acquired from 

20 different points for each lumber. As a result, 1,000 

spectra were acquired for each species.

2.3. Soft independent modeling of class 
analogy (SIMCA)

The SIMCA classification model was developed 

using The Unscrambler 10.3 (CAMO, Norway) 

software. The NIR spectral data of each species were 

randomly divided into a training set (800 spectra) and 

test set (200 spectra). In SIMCA, a class (species in 

this study) can be modeled by means of principal 

components analysis (PCA). As a separate PCA is 

performed for each training set, information of dataset 

is extracted by orthogonalizing the variance of data 

and storing this in the principal components (PCs). The 

optimal number of PCs for the PCA model was 

determined when the increment of the total explained 

variance with added PC was < 1%, to prevent overfitting 

(Yang et al., 2013). 

In the SIMCA classification procedure, every 

spectrum of the training set was subjected to each 

optimal PCA model. Then, the residuals of each class－

specific PCA model were evaluated to define the 

distribution of residuals for each class training set, 

thereby allowing classification of a new sample to one 

or several available classes (Bylesjö et al., 2006; Fujimoto 

and Tsuchikawa, 2010). Given this class－specific 

residual distribution, any spectra in the test set can 

subsequently be classified with a probability of equal 

variance compared to the model residuals according 

to Fisher’s test (F－test). Outliers were detected in the 

75% confidence interval of the F－distribution in our 

study. The results of the F－test of residuals by SIMCA 

show that there are three possible results of classification 

(Esbensen et al., 2002); (1) a sample belongs to a class, 

(2) a sample belongs to several classes, or (3) a sample 

does not belong to a class. In this study, we defined 

the second result as multi－classified and the third as 

unclassified. Classification reliability was evaluated 

using the test set. For SIMCA modeling, different types 

of NIR data were used: original spectra, standard normal 

variate (SNV) preprocessed spectra, and Savitzky–
Golay 2nd derivative (window size = 21, polynomial 

order = 2) preprocessed spectra. This approach was 

taken because model performance based on NIR spectra 

could differ by mathematical preprocessing.

3. RESULTS and DISCUSSION

3.1. Near-infrared (NIR) spectra

Fig. 1 shows the raw NIR spectra of each species 

(the spectra for each species training set were averaged 

to give a single spectrum). The raw spectra had a 

different absorbance, depending on the species. NIR 

light penetrates less than visible light, so thick material, 

such as lumber, acquires an absorbance spectrum in 

a diffuse reflectance mode. Even if they are the same 

species, the absorbance differs, depending on the surface 

roughness and grain angle in the lumber. These factors 

make the spectral variance more than a species 

difference. Therefore, it is necessary to preprocess the 

NIR spectra, to ensure the analysis’ reproducibility. In 

this study, SNV (Fig. 2) and the Savitzky–Golay 2nd 

derivative (Fig. 3) preprocessing were applied to the 

spectra. The results of SNV preprocessing (Barnes et 
al., 1989) showed that each species’ average spectrum 

was more similar than the raw absorbance spectra. There 
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Fig. 1. Raw average NIR absorbance spectra for each
species.

Fig. 2. SNV preprocessed average NIR absorbance
spectra for each species.

Fig. 3. Savitzky－Golay 2nd derivative preprocessed 
average NIR spectra for each species.

was a difference in the absorbance of cedar in the below 

1,100 nm region compared to other species. The 

Savitzky–Golay 2nd derivative preprocessing can 

deconvolute the overlapping of absorption bands and 

remove the baseline (Savitzky and Golay, 1964). Fig. 

3 shows the Savitzky–Golay 2nd derivative preprocessed 

average absorbance spectra. It was absolute that the 

spectral pattern for each species’ average spectra was 

also more similar than the raw absorbance spectra. Thus, 

it was expected that the variance originated from species 

variation would be more dominant after mathematical 

preprocessing.

3.2 Principal components analysis (PCA) 
modeling

Table 2 shows the optimal number of PCs, and the 

total explained variance in the optimal PCs for each 

class. PCA models of each species, using the raw 

spectra, had optimal PCs when one or two PCs were 

included. The total explained variance of the optimal 

model was about 99%, which meant that only one or 

two PCs contained 99% of the raw spectra information. 

This outcome is because the absorbance highly 

correlates with the overlapping of the absorption bands, 

and the baselines were not removed. The PCA models 

for each species, using the SNV preprocessed spectra, 

were evaluated as optimal when they had 5–7 PCs that 

explained about 96–98% of the total variance. The SNV 

preprocessed PCA models had more PCs but fewer 

variances than the raw PCA models. These results were 

also found in the PCA models based on the Savitzky–
Golay 2nd derivative preprocessed spectra, which had 

6–9 optimal PCs and explained 89–91% of the total 

variance. This means that mathematical preprocessing 

weakened correlation of the raw NIR data and 

emphasized the characteristics of the data.

3.3 Soft independent modeling of class 
analogy (SIMCA) classification

The performance of a classification model can be 

evaluated by calculating the number of correctly 
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NIR data 
type

Larch Red pine Korean pine Cedar Cypress

PCs* 
** PCs  PCs  PCs  PCs 

Raw 2 99.33% 2 99.10% 2 99.28% 2 98.71% 1 98.98%

SNV*** 7 97.55% 7 96.73% 6 96.05% 5 97.00% 6 98.32%

SG 2nd**** 7 91.30% 9 91.11% 9 91.93% 8 89.54% 6 91.11%

*    optimal number of principal components 
**   explained total variance containing in optimal number of principal components
***  Standard normal variate
**** Savitzky−Golay 2nd derivatives

Table 2. Optimal number of principal components and explained total variance of principal component analysis
model 

Actual class

Predicted class
Positive Negative

Positive
True positive

(TP)
False positive

(FP)

Negative
False negative

(FN)
True negative

(TN)

Table 3. Confusion matrix in the case of binary
classification

classified class samples (true positives, TP), the number 

of correctly classified samples that do not belong to 

the class (true negatives, TN), and the samples that 

were either incorrectly classified (false positives, FP) 

or were not classified as class samples (false negatives, 

FN). These four counts constitute a confusion matrix, 

as shown in Table 3, in the case of the binary 

classification (Sokolova and Lapalme, 2009).

Accuracy is defined as the number of correctly 

classified positive and negative samples divided by the 

total sample number (Eq. 1). Precision is the number 

of correctly classified positive samples divided by the 

number of samples predicted as positive (Eq. 2). Recall 

is the number of correctly classified positive samples 

(TP) divided by the number of actual positive samples 

(Eq. 3). 

  Accuracy (%) =
 × 100 ···· (1)

      Precision (%) =


 × 100 ············ (2)

       Recall (%) =


 × 100 ·············· (3)

Table 4 presents the species classification result 

(confusion matrix) of SIMCA based on raw spectra, 

for which the classification accuracy was 35.50%. The 

precisions for each species were in the range 78.95–
99.07%. However, the recalls for each species were 

very low, at 15.00–57.50%. An interesting point is that 

the total number of misclassified samples was much 

fewer than that of multi－classified or unclassified 

samples. Among the multi－classified samples, there 

were two to even five class multi－classifications (not 

shown in this study). As the reliability parameters were 

evaluated as very low, it was difficult to expect clear 

species classification using SIMCA with raw spectra. 

Table 5 provides the species classification result of 

SIMCA based on SNV preprocessed spectra, for which 

the classification accuracy was 51.90%. The precisions 

for each species were in the range 90.67–100.00%. 

However, recalls for each species were very low, in 

the range 19.50–76.50%. Accuracy, precision, and recall 

were improved after SNV preprocessing of the raw 

spectra, except for the precision for cedar and recall 

for cypress. The number of unclassified samples was 

similar to that of the SIMCA model based on raw 

spectra. However, the number of multi－classified 

samples was highly reduced, except for cypress. In the  

case of cypress, the almost multi－classified samples were 

assigned as both cedar and cypress (not shown in this 

paper). It was estimated that the spectral pattern of 
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Actual species
Predicted species

Larch Red pine Korean pine Cedar Cypress Precision (%)

Larch 106 0 1 0 0 99.07

Red pine 0 30 6 0 2 78.95

Korean pine 1 3 32 0 1 86.49

Cedar 1 1 0 115 2 96.64

Cypress 2 1 2 5 72 87.80

Unclassified 52 48 36 60 29 -

Multi－classified 38 117 123 20 94 -

Total (ea) 200 200 200 200 200 -

Recall (%) 53.00 15.00 16.00 57.50 36.00 -

Accuracy (%) 35.50

Table 4. Confusion matrix of SIMCA based on each species PCA models using raw spectra

Actual species
Predicted species

Larch Red pine Korean pine Cedar Cypress Precision (%)

Larch 152 0 0 0 0 100.00

Red pine 0 139 1 0 0 99.29

Korean pine 2 0 135 0 0 98.54

Cedar 0 0 0 165 0 100.00

Cypress 0 0 0 0 139 100.00

Unclassified 37 52 41 33 32 -

Multi－classified 9 9 23 2 29 -

Total (ea) 200 200 200 200 200 -

Recall (%) 76.00 69.50 67.50 82.50 69.50 -

Accuracy (%) 73.00

Table 6. Confusion matrix of SIMCA based on each species PCA models using Savitzky－Golay 2nd derivative
preprocessed spectra.

Actual species
Predicted species

Larch Red pine Korean pine Cedar Cypress Precision (%)

Larch 153 0 0 0 0 100.00

Red pine 0 94 3 0 0 96.91

Korean pine 0 5 97 0 0 95.10

Cedar 0 1 0 136 13 90.67

Cypress 0 0 0 0 39 100.00

Unclassified 43 56 43 64 27 -

Multi－classified 4 44 57 0 121 -

Total (ea) 200 200 200 200 200 -

Recall (%) 76.50 47.00 48.50 68.00 19.50 -

Accuracy (%) 51.90

Table 5. Confusion matrix of SIMCA based on each species PCA models using Standard normal variate preprocessed
spectra.
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cypress after SNV preprocessing was a subset of cedar. 

Table 6 lists the species classification result of 

SIMCA based on Savitzky－Golay 2nd derivative 

preprocessed spectra. The classification accuracy was 

73.00%, and the precisions for each species ranged from 

98.54–100.00%. The recalls for each species was in 

the range 67.50–82.50%. Accuracy, precision, and recall 

were dramatically improved after the Savitzky–Golay 

2nd derivative preprocessing of raw spectra for every 

species. The reliability parameters were improved 

compared to the SNV case. The total amount of 

unclassified samples was decreased compared to the 

SIMCA model with raw spectra. The unclassified 

samples are considered outliers for the model, but this 

is not a critical problem in classification compared to 

misclassification. In this context, it was encouraging 

that the minimum precision was < 98.54%. Although 

it had relatively low accuracy and recall, only three 

samples were misclassified as different species in the 

test set (1,000 samples) by SIMCA based on Savitzky–
Golay 2nd derivative preprocessed spectra. As a result, 

Savitzky–Golay 2nd derivative preprocessing of NIR 

spectra showed the best reliability in SIMCA 

classification. The accuracy, minimum precision, and 

minimum recall of the best model were evaluated as 

73.00%, 98.54%, and 67.50%, respectively. 

4. CONCLUSION 

This study examined the NIR spectroscopy and 

SIMCA for lumber species classification. A SIMCA 

classification model was developed using the NIR 

spectra acquired from the lumber surface. The 

classification reliability indices differed by 

mathematical preprocessing (raw, SNV, and Savitzky–
Golay 2nd derivatives) of the NIR spectra. Among the 

modeling conditions, Savitzky–Golay 2nd derivatives 

showed the best classification performance. The best 

NIR spectra acquired from the lumber could be applied 

to classify lumber species by the SIMCA classification 

method, but the accuracy and recall should be 

improved. 
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