• 제목/요약/키워드: FOREST CLASSIFICATION

검색결과 1,056건 처리시간 0.024초

CNN 모델과 Transformer 조합을 통한 토지피복 분류 정확도 개선방안 검토 (Assessing Techniques for Advancing Land Cover Classification Accuracy through CNN and Transformer Model Integration)

  • 심우담;이정수
    • 한국지리정보학회지
    • /
    • 제27권1호
    • /
    • pp.115-127
    • /
    • 2024
  • 본 연구는 Transformer 모듈을 기반으로 다양한 구조의 모델을 구성하고, 토지피복 분류를 수행하여 Transformer 모듈의 활용방안 검토를 목적으로 하였다. 토지피복 분류를 위한 딥러닝 모델은 CNN 구조를 가진 Unet 모델을 베이스 모델로 선정하였으며, 모델의 인코더 및 디코더 부분을 Transformer 모듈과 조합하여 총 4가지 딥러닝 모델을 구축하였다. 딥러닝 모델의 학습과정에서 일반화 성능 평가를 위해 같은 학습조건으로 10회 반복하여 학습을 진행하였다. 딥러닝 모델의 분류 정확도 평가결과, 모델의 인코더 및 디코더 구조 모두 Transformer 모듈을 활용한 D모델이 전체 정확도 평균 약 89.4%, Kappa 평균 약 73.2%로 가장 높은 정확도를 보였다. 학습 소요시간 측면에서는 CNN 기반의 모델이 가장 효율적이었으나 Transformer 기반의 모델을 활용할 경우, 분류 정확도가 Kappa 기준 평균 0.5% 개선되었다. 차후, CNN 모델과 Transformer의 결합과정에서 하이퍼파라미터 조절과 이미지 패치사이즈 조절 등 다양한 변수들을 고려하여 모델을 고도화 할 필요가 있다고 판단된다. 토지피복 분류과정에서 모든 모델이 공통적으로 발생한 문제점은 소규모 객체들의 탐지가 어려운 점이었다. 이러한 오분류 현상의 개선을 위해서는 고해상도 입력자료의 활용방안 검토와 함께 지형 정보 및 질감 정보를 포함한 다차원적 데이터 통합이 필요할 것으로 판단된다.

A Comparative Study of Carbon Absorption Measurement Using Hyperspectral Image and High Density LiDAR Data in Geojedo

  • Choi, Byoung Gil;Na, Young Woo;Shin, Young Seob
    • 한국측량학회지
    • /
    • 제35권4호
    • /
    • pp.231-240
    • /
    • 2017
  • This paper aims to study a method to estimate precise carbon absorption by quantification of forest information that uses accurate LiDAR data, hyperspectral image. To estimate precise carbon absorption value by using spatial data, a problem was found out of carbon absorption value estimation method with statistical method, which is already existed method, and then offered optimized carbon absorption estimation method with spatial information by analyzing with methods of compare digital aerial photogrammetry and LiDAR data. It turned out possible Precise classification and quantification in case of using LiDAR and hyperspectral image. Various classification of tree species was possible with use of LiDAR and hyperspectral image. Classification of hyperspectral image was matched in general with field survey and Mahalanobis distance classification method. Precise forest resources could be extracted using high density LiDAR data. Compared with existing method, 19.7% in forest area, 19.2% in total carbon absorption, 0.9% in absorption per unit area of difference created, and improvement was found out to be estimated precisely in international code.

THE LAND COVER MAPPING IN NORTH KOREA USING MODIS IMAGE;THE CLASSIFICATION ACCURACY ENHANCEMENT FOR INACCESSIBLE AREA USING GOOGLE EARTH

  • Cha, Su-Young;Park, Chong-Hwa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.341-344
    • /
    • 2007
  • A major obstacle to classify and validate Land Cover maps is the high cost of generating reference data or multiple thematic maps for subsequent comparative analysis. In case of inaccessible area such as North Korea, the high resolution satellite imagery may be used as in situ data so as to overcome the lack of reliable reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird (0.6m) of North Korea obtained from Google Earth data provided thru internet. Monthly NDVI images of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes; coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water and built-up area. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional in situ data collection on the site where the accessibility is severely limited.

  • PDF

KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발 (Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map)

  • 송지용;정종철;이상훈
    • 한국환경생태학회지
    • /
    • 제32권6호
    • /
    • pp.686-697
    • /
    • 2018
  • 오늘날 원격탐지기술의 발달로 인해, 산림지역과 같이 피복 분류작업이 난해한 지역을 비롯한 광범위한 지역에서의 세밀한 변화탐지를 위한 고해상도 위성영상 취득이 가능해졌다. 하지만, 고해상도 영상에 대한 시계열분석의 과정에서 많은 양의 지상 관측 데이터가 요구된다. 본 연구에서는 토지피복도를 지상 관측데이터로 활용한 위성영상 분류 방법의 가능성을 시험하였다. 연구대상지는 강원도 원주시이며, 산림지역과 시가화지역이 공존하는 공간이다. 연구 자료는 2015년 3월에 촬영된 KOMPSAT-3A 영상과 2017년도 토지피복도를 이용하여 분류를 시도하였다. 서포트벡터머신(SVM)과 랜덤포레스트(RF)의 두 가지 상이한 화소기반 분류기법을 적용하여 대상지에 대한 피복분류의 분류정확도를 비교 분석하였으며, SVM 분석의 경우 다수 분석(Majority analysis)을 후속 진행하였다. 분석대상은 산림식생만 포함한 지역과 연구대상지 전지역으로 구분하였고, 대상 면적이 협소한 습지는 분석과정에서 제외하였다. 분류 결과는 오차 행렬의 전체 정확도가 두 가지 분류대상에 대해 RF 기법이 SVM 기법보다 더 나은 것으로 나타났다. 산림지역만을 대상으로 한 경우, RF 기법이 SVM 기법에 비해 18.3% 높은 값을 나타낸 반면, 전체지역을 대상으로 한 경우는 둘 사이의 간격이 5.5%로 줄어들었다. SVM 기법에 다수 분석 (Majority analysis)을 추가로 실시한 경우, 1% 정도의 정확도 향상이 나타났다. RF 기법은 산림지역의 활엽수를 분석해 내는데 상당히 효과적이었지만, 다른 대상에 대해서는 SVM 기법이 더 나은 결과를 나타내었다. 본 연구는 고해상도 단일시기 영상에 대한 화소 기반의 분류기법을 시험한 것으로, 추후 시계열분석 및 객체기반 분류기법의 추가적인 적용으로 향상된 정확도와 신뢰도를 얻을 수 있을 것으로 판단된다. 이 연구의 방법론은 시공간적으로 고해상도 분석결과를 제공함으로써, 대면적의 토지계획에 유용할 것으로 기대된다.

DEVELOPING FOREST TYPE CLASSIFICATION METHODOLOGY USING KOMPSAT IMAGE BASED ON TASSELED CAP TRANSFORMATION

  • Kim, Sung-Jae;Jo, Yun-Won;Jo, Myung-Hee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.358-360
    • /
    • 2008
  • Recently there are many pilot studies for advanced application of first Korea national high resolution satellite image, which is called as KOMPSAT-MSC (Korean Multi-purpose Satellite-Multi-Spectral Camera), in Korea. In this study the forest type classification methodology is developed and its distribution map was constructed by applying high resolution satellite image, KOMPSAT-MSC, based on Tasseled Cap Transformation, especially through comparing the result of detailed filed surveying such as forest type, tree species, tree diameter, tree age and tree crown density in pilot study area.

  • PDF

대둔산 도립공원 삼림식생의 분류와 유형분석 (Classification and Pattern Analysis of the Forest Vegetation in Daedunsan Provincial Park, Korea)

  • Kim, Jeong-Un;Yim, Yang-Jai;Kil, Bong-Seop
    • The Korean Journal of Ecology
    • /
    • 제11권3호
    • /
    • pp.109-122
    • /
    • 1988
  • The foret vegetations of Daedunsan provincial park area in Korea were classified into eight communities of Acer mono-Zelkova serrata, Lindera erythrocarpa-Cornus controversa, Carpinus tschonoskii, Quercus variabilis, Quercus serrata, Carpinus laxiflora, Rhododendron schlippenbachii-Quercus mongolica and Rhododendron mucronu-latum-Pinus densiflora by the Z-M method. By two dimensional analysis of temperature, moisture gradients, the eight communities were grouped into four vegetation types: cove forest dominated with Zelkova serrata and Cornus controversa, hornbeam forest with Carpinus tschonoskii and Carpinus laxiflora, oak forest with Quercus variabilis, Quercus mongolica, Carpinus laxiflora, Carpinus tschonoskii, Zelkova serrta and Pinus densiflora community was made from the analysis of actual vegetation map by the phytosociological classification, environmental conditions and human interferences.

  • PDF

Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique

  • Kim, Yu Jeong;Lee, Dong Su
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.213-219
    • /
    • 2020
  • 본 연구는 스마트폰 과의존을 진단하고 예측하기 위하여 할 수 있는 분류분석 방법과 스마트폰 과의존 분류율에 영향을 미치는 중요변수를 규명하고자 시도되었다. 이를 위해 인공지능의 방법인 기계학습 분석 기법 중 의사결정트리, 랜덤포레스트, 서포트벡터머신의 분류율을 비교하였다. 자료는 한국정보화진흥원에서 제공한 '2018년 스마트폰 과의존 실태조사'에 응답한 25,465명의 데이터였고, R 통계패키지(ver. 3.6.2)를 사용하여 분석하였다. 분석한 결과, 3가지 분류분석 기법은 정분류율이 유사하게 나타났으며, 모델에 대한 과적합 문제가 발생되지 않았다. 3가지 분류분석 방법 중 서포트벡터머신의 분류율이 가장 높게 나타났고, 다음으로 의사결정트리 기법, 랜덤포레스트 기법 순이었다. 스마트폰 이용 유형 중 분류율에 영향을 미치는 상위 3개 변수는 생활서비스형, 정보검색형, 여가추구형이었다.

오서산 산림식생의 상관우점종, 종조성 및 종간연관에 의한 군집유형 분류 (Classification of Community Type by Physiognomy Dominant Species, Floristic Composition and Interspecific Association of Forest Vegetation in Mt. Oseosan)

  • 변성엽;윤충원
    • 한국산림과학회지
    • /
    • 제106권2호
    • /
    • pp.169-185
    • /
    • 2017
  • 산림식생은 분류방법에 따라 식생유형의 결과가 다를 수 있다. 본 연구의 목적은 세 종류의 식생분류 방법론을 적용하여 결과를 비교하기 위해 충남 오서산 산림식생을 대상으로 2016년 9월부터 10월까지 총 80개소의 식생조사를 수행하였다. 얻어진 자료를 토대로 상관우점종에 의한 군락유형분류, 종조성에 따른 군락유형분류, 종간연관 분석을 실시하였다. 상관우점종에 의한 군락유형분류를 실시한 결과, 소나무군락, 신갈나무군락, 느티나무군락, 상수리나무군락, 층층나무군락, 졸참나무군락, 일본잎갈나무군락, 리기다소나무군락, 밤나무군락, 백합나무군락의 총 10개의 군락유형으로 구분되었다. 종조성에 따른 유형분류를 실시한 결과, 총 4개의 식생단위와 8개의 종군 유형으로 분류되었다. 종조성 체계의 최상위 수준에서 비목나무군락군으로 대표되어졌으며, 비목나무군락군은 진달래군락(진달래전형군, 쪽동백나무군), 느티나무군락(일본잎갈나무군, 큰개별꽃군)으로 분류되어, 1개 군락군 2개 군락 2개 군의 분류체계를 나타냈다. 종간연관 분석 결과는 크게 두 개의 그룹으로 나누어졌으며, 종조성에 의한 군락유형과 종간연관에 의한 유형은 지형적인 영향이 크게 작용하는 것으로 판단되었다. 조사지의 산림식생은 상관우점종에 의해 10개의 군락유형, 종조성에 의해 8개의 종군단위와 4개의 식생단위, 종간연관에 의해 2개의 유형으로 분류되어, 상관우점종, 종조성(종군유형${\rightarrow}$식생단위), 종간연관 순으로 식생단위가 단순화되는 것을 알 수 있었다. 결론적으로 산림식생은 분류방법론에 따라 다양한 식생유형이 분류되었고 또한 많은 환경요인들의 영향이 작용하고 있는 것으로 판단되었다.

기계학습기법을 이용한 땅밀림 위험등급 분류 (Classification of Soil Creep Hazard Class Using Machine Learning)

  • 이기하;레수안히엔;연민호;서준표;이창우
    • 한국방재안전학회논문집
    • /
    • 제14권3호
    • /
    • pp.17-27
    • /
    • 2021
  • 본 연구에서는 6개의 기계학습 기법들을 활용하여 2019년과 2020년 전국 땅밀림 현장조사 결과를 기반으로 땅밀림 위험지역을 A부터 C까지 3개 등급(A등급: 위험, B등급: 보통, C등급: 양호)으로 구분할 수 있는 분류모형을 구축하고, 분류 정확도를 비교·분석한다. 기계학습 기법으로는 K-Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, Extreme Gradient Boosting 총 6개를 적용하였다. 분류 정확도 분석결과, 6개의 기법 모두 0.9 이상의 우수한 정확도를 보여주었다. 수치형 자료를 학습에 적용한 경우가, 문자형 자료를 학습한 모형보다 우수한 성능을 나타냈으며, 현장조사 평가점수 자료군(C1~C4) 보다는 전문가의견이 반영된 평가점수 자료군(R1~R4)으로 학습한 모형이 정확도가 높은 것으로 분석되었다. 특히, 직접징후와 간접징후 정보를 학습에 반영한 경우가 예측정확도가 높게 나타났다. 향후 땅밀림 현장조사 자료가 지속적으로 확보될 경우, 본 연구에서 활용한 기계학습기법은 땅밀림 분류를 위한 도구로 활용이 가능할 것으로 판단된다.

도시숲 조성 및 관리를 위한 도시숲 유형화 및 적용방안 (Classification of Urban Forest Types and its Application Methods for Forests Creation and Management)

  • 이동근;김은영;송원경;박찬;최혜영
    • 한국환경복원기술학회지
    • /
    • 제12권5호
    • /
    • pp.101-109
    • /
    • 2009
  • There are increasing needs about creation and sustainable management of urban forest for environmental conservation and recreational service for citizen. However, it is difficult for local governments to create or manage urban forest in recreational or conservational way. The purpose of this study is to classify the urban forest types by considering its geographical feature, biological and sociological characteristics in order to suggest a guide to local governments about effective creation or management of urban forest. In this study, we extracted common characteristics of the selected five indicators. Factors about urban forest are divided into two groups. Factors were named according to the variables as 'Urban Forest Naturalness', and 'High Accessibility and Disturbed by Human.' In addition, we classified urban forests into four types in this study. The type I of urban forest is a large forest and has high naturalness such as Mt. Bukhan and Mt. Gwanak. The type II is fragmented to large forests by developmental projects. The type III is flat and has high accessibility such as forest behind Seonjeongneung. The type IV is located near residential area such as Mt. Ansan, Mt. Inwang and Mt. Bonghwa. It is possible to set up recreational area for citizens and ecological networks for species by the research of the urban forest type. The results of the study, classification of urban forest types and its application, contribute to provide a guide for local governments to create or manage urban forests effectively.