본 연구는 Transformer 모듈을 기반으로 다양한 구조의 모델을 구성하고, 토지피복 분류를 수행하여 Transformer 모듈의 활용방안 검토를 목적으로 하였다. 토지피복 분류를 위한 딥러닝 모델은 CNN 구조를 가진 Unet 모델을 베이스 모델로 선정하였으며, 모델의 인코더 및 디코더 부분을 Transformer 모듈과 조합하여 총 4가지 딥러닝 모델을 구축하였다. 딥러닝 모델의 학습과정에서 일반화 성능 평가를 위해 같은 학습조건으로 10회 반복하여 학습을 진행하였다. 딥러닝 모델의 분류 정확도 평가결과, 모델의 인코더 및 디코더 구조 모두 Transformer 모듈을 활용한 D모델이 전체 정확도 평균 약 89.4%, Kappa 평균 약 73.2%로 가장 높은 정확도를 보였다. 학습 소요시간 측면에서는 CNN 기반의 모델이 가장 효율적이었으나 Transformer 기반의 모델을 활용할 경우, 분류 정확도가 Kappa 기준 평균 0.5% 개선되었다. 차후, CNN 모델과 Transformer의 결합과정에서 하이퍼파라미터 조절과 이미지 패치사이즈 조절 등 다양한 변수들을 고려하여 모델을 고도화 할 필요가 있다고 판단된다. 토지피복 분류과정에서 모든 모델이 공통적으로 발생한 문제점은 소규모 객체들의 탐지가 어려운 점이었다. 이러한 오분류 현상의 개선을 위해서는 고해상도 입력자료의 활용방안 검토와 함께 지형 정보 및 질감 정보를 포함한 다차원적 데이터 통합이 필요할 것으로 판단된다.
This paper aims to study a method to estimate precise carbon absorption by quantification of forest information that uses accurate LiDAR data, hyperspectral image. To estimate precise carbon absorption value by using spatial data, a problem was found out of carbon absorption value estimation method with statistical method, which is already existed method, and then offered optimized carbon absorption estimation method with spatial information by analyzing with methods of compare digital aerial photogrammetry and LiDAR data. It turned out possible Precise classification and quantification in case of using LiDAR and hyperspectral image. Various classification of tree species was possible with use of LiDAR and hyperspectral image. Classification of hyperspectral image was matched in general with field survey and Mahalanobis distance classification method. Precise forest resources could be extracted using high density LiDAR data. Compared with existing method, 19.7% in forest area, 19.2% in total carbon absorption, 0.9% in absorption per unit area of difference created, and improvement was found out to be estimated precisely in international code.
A major obstacle to classify and validate Land Cover maps is the high cost of generating reference data or multiple thematic maps for subsequent comparative analysis. In case of inaccessible area such as North Korea, the high resolution satellite imagery may be used as in situ data so as to overcome the lack of reliable reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird (0.6m) of North Korea obtained from Google Earth data provided thru internet. Monthly NDVI images of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes; coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water and built-up area. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional in situ data collection on the site where the accessibility is severely limited.
오늘날 원격탐지기술의 발달로 인해, 산림지역과 같이 피복 분류작업이 난해한 지역을 비롯한 광범위한 지역에서의 세밀한 변화탐지를 위한 고해상도 위성영상 취득이 가능해졌다. 하지만, 고해상도 영상에 대한 시계열분석의 과정에서 많은 양의 지상 관측 데이터가 요구된다. 본 연구에서는 토지피복도를 지상 관측데이터로 활용한 위성영상 분류 방법의 가능성을 시험하였다. 연구대상지는 강원도 원주시이며, 산림지역과 시가화지역이 공존하는 공간이다. 연구 자료는 2015년 3월에 촬영된 KOMPSAT-3A 영상과 2017년도 토지피복도를 이용하여 분류를 시도하였다. 서포트벡터머신(SVM)과 랜덤포레스트(RF)의 두 가지 상이한 화소기반 분류기법을 적용하여 대상지에 대한 피복분류의 분류정확도를 비교 분석하였으며, SVM 분석의 경우 다수 분석(Majority analysis)을 후속 진행하였다. 분석대상은 산림식생만 포함한 지역과 연구대상지 전지역으로 구분하였고, 대상 면적이 협소한 습지는 분석과정에서 제외하였다. 분류 결과는 오차 행렬의 전체 정확도가 두 가지 분류대상에 대해 RF 기법이 SVM 기법보다 더 나은 것으로 나타났다. 산림지역만을 대상으로 한 경우, RF 기법이 SVM 기법에 비해 18.3% 높은 값을 나타낸 반면, 전체지역을 대상으로 한 경우는 둘 사이의 간격이 5.5%로 줄어들었다. SVM 기법에 다수 분석 (Majority analysis)을 추가로 실시한 경우, 1% 정도의 정확도 향상이 나타났다. RF 기법은 산림지역의 활엽수를 분석해 내는데 상당히 효과적이었지만, 다른 대상에 대해서는 SVM 기법이 더 나은 결과를 나타내었다. 본 연구는 고해상도 단일시기 영상에 대한 화소 기반의 분류기법을 시험한 것으로, 추후 시계열분석 및 객체기반 분류기법의 추가적인 적용으로 향상된 정확도와 신뢰도를 얻을 수 있을 것으로 판단된다. 이 연구의 방법론은 시공간적으로 고해상도 분석결과를 제공함으로써, 대면적의 토지계획에 유용할 것으로 기대된다.
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.358-360
/
2008
Recently there are many pilot studies for advanced application of first Korea national high resolution satellite image, which is called as KOMPSAT-MSC (Korean Multi-purpose Satellite-Multi-Spectral Camera), in Korea. In this study the forest type classification methodology is developed and its distribution map was constructed by applying high resolution satellite image, KOMPSAT-MSC, based on Tasseled Cap Transformation, especially through comparing the result of detailed filed surveying such as forest type, tree species, tree diameter, tree age and tree crown density in pilot study area.
The foret vegetations of Daedunsan provincial park area in Korea were classified into eight communities of Acer mono-Zelkova serrata, Lindera erythrocarpa-Cornus controversa, Carpinus tschonoskii, Quercus variabilis, Quercus serrata, Carpinus laxiflora, Rhododendron schlippenbachii-Quercus mongolica and Rhododendron mucronu-latum-Pinus densiflora by the Z-M method. By two dimensional analysis of temperature, moisture gradients, the eight communities were grouped into four vegetation types: cove forest dominated with Zelkova serrata and Cornus controversa, hornbeam forest with Carpinus tschonoskii and Carpinus laxiflora, oak forest with Quercus variabilis, Quercus mongolica, Carpinus laxiflora, Carpinus tschonoskii, Zelkova serrta and Pinus densiflora community was made from the analysis of actual vegetation map by the phytosociological classification, environmental conditions and human interferences.
본 연구는 스마트폰 과의존을 진단하고 예측하기 위하여 할 수 있는 분류분석 방법과 스마트폰 과의존 분류율에 영향을 미치는 중요변수를 규명하고자 시도되었다. 이를 위해 인공지능의 방법인 기계학습 분석 기법 중 의사결정트리, 랜덤포레스트, 서포트벡터머신의 분류율을 비교하였다. 자료는 한국정보화진흥원에서 제공한 '2018년 스마트폰 과의존 실태조사'에 응답한 25,465명의 데이터였고, R 통계패키지(ver. 3.6.2)를 사용하여 분석하였다. 분석한 결과, 3가지 분류분석 기법은 정분류율이 유사하게 나타났으며, 모델에 대한 과적합 문제가 발생되지 않았다. 3가지 분류분석 방법 중 서포트벡터머신의 분류율이 가장 높게 나타났고, 다음으로 의사결정트리 기법, 랜덤포레스트 기법 순이었다. 스마트폰 이용 유형 중 분류율에 영향을 미치는 상위 3개 변수는 생활서비스형, 정보검색형, 여가추구형이었다.
산림식생은 분류방법에 따라 식생유형의 결과가 다를 수 있다. 본 연구의 목적은 세 종류의 식생분류 방법론을 적용하여 결과를 비교하기 위해 충남 오서산 산림식생을 대상으로 2016년 9월부터 10월까지 총 80개소의 식생조사를 수행하였다. 얻어진 자료를 토대로 상관우점종에 의한 군락유형분류, 종조성에 따른 군락유형분류, 종간연관 분석을 실시하였다. 상관우점종에 의한 군락유형분류를 실시한 결과, 소나무군락, 신갈나무군락, 느티나무군락, 상수리나무군락, 층층나무군락, 졸참나무군락, 일본잎갈나무군락, 리기다소나무군락, 밤나무군락, 백합나무군락의 총 10개의 군락유형으로 구분되었다. 종조성에 따른 유형분류를 실시한 결과, 총 4개의 식생단위와 8개의 종군 유형으로 분류되었다. 종조성 체계의 최상위 수준에서 비목나무군락군으로 대표되어졌으며, 비목나무군락군은 진달래군락(진달래전형군, 쪽동백나무군), 느티나무군락(일본잎갈나무군, 큰개별꽃군)으로 분류되어, 1개 군락군 2개 군락 2개 군의 분류체계를 나타냈다. 종간연관 분석 결과는 크게 두 개의 그룹으로 나누어졌으며, 종조성에 의한 군락유형과 종간연관에 의한 유형은 지형적인 영향이 크게 작용하는 것으로 판단되었다. 조사지의 산림식생은 상관우점종에 의해 10개의 군락유형, 종조성에 의해 8개의 종군단위와 4개의 식생단위, 종간연관에 의해 2개의 유형으로 분류되어, 상관우점종, 종조성(종군유형${\rightarrow}$식생단위), 종간연관 순으로 식생단위가 단순화되는 것을 알 수 있었다. 결론적으로 산림식생은 분류방법론에 따라 다양한 식생유형이 분류되었고 또한 많은 환경요인들의 영향이 작용하고 있는 것으로 판단되었다.
본 연구에서는 6개의 기계학습 기법들을 활용하여 2019년과 2020년 전국 땅밀림 현장조사 결과를 기반으로 땅밀림 위험지역을 A부터 C까지 3개 등급(A등급: 위험, B등급: 보통, C등급: 양호)으로 구분할 수 있는 분류모형을 구축하고, 분류 정확도를 비교·분석한다. 기계학습 기법으로는 K-Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, Extreme Gradient Boosting 총 6개를 적용하였다. 분류 정확도 분석결과, 6개의 기법 모두 0.9 이상의 우수한 정확도를 보여주었다. 수치형 자료를 학습에 적용한 경우가, 문자형 자료를 학습한 모형보다 우수한 성능을 나타냈으며, 현장조사 평가점수 자료군(C1~C4) 보다는 전문가의견이 반영된 평가점수 자료군(R1~R4)으로 학습한 모형이 정확도가 높은 것으로 분석되었다. 특히, 직접징후와 간접징후 정보를 학습에 반영한 경우가 예측정확도가 높게 나타났다. 향후 땅밀림 현장조사 자료가 지속적으로 확보될 경우, 본 연구에서 활용한 기계학습기법은 땅밀림 분류를 위한 도구로 활용이 가능할 것으로 판단된다.
There are increasing needs about creation and sustainable management of urban forest for environmental conservation and recreational service for citizen. However, it is difficult for local governments to create or manage urban forest in recreational or conservational way. The purpose of this study is to classify the urban forest types by considering its geographical feature, biological and sociological characteristics in order to suggest a guide to local governments about effective creation or management of urban forest. In this study, we extracted common characteristics of the selected five indicators. Factors about urban forest are divided into two groups. Factors were named according to the variables as 'Urban Forest Naturalness', and 'High Accessibility and Disturbed by Human.' In addition, we classified urban forests into four types in this study. The type I of urban forest is a large forest and has high naturalness such as Mt. Bukhan and Mt. Gwanak. The type II is fragmented to large forests by developmental projects. The type III is flat and has high accessibility such as forest behind Seonjeongneung. The type IV is located near residential area such as Mt. Ansan, Mt. Inwang and Mt. Bonghwa. It is possible to set up recreational area for citizens and ecological networks for species by the research of the urban forest type. The results of the study, classification of urban forest types and its application, contribute to provide a guide for local governments to create or manage urban forests effectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.