• Title/Summary/Keyword: FOOT FORCE

Search Result 339, Processing Time 0.026 seconds

A Biomechanical Analysis According to Passage of Rehabilitation Training Program of ACL Patients (전방십자인대 수술자의 재활트레이닝 경과에 따른 운동역학적 분석)

  • Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.235-243
    • /
    • 2013
  • The purpose of this study was to analyse scientific according to period of rehabilitation training of ACL patients. ACL patients seven subjects participated in this study. Gait (1.58 m/sec) analysis was performed by using a 3-D Cinematography, a Zebris system and a electromyograph system. The data were analyzed by paired t-test. The joint angles were recorded from the ankle, knee, hip joints. Peak max dorsi-flexion and peak max plantar-flexion identified significant differences (p<0.05). Another angles were no significant difference. Vertical force (Fz) and max pressure variables improved 6 month RTP better than 3 month RTP. EMG were collected from 4 muscles (rectus femoris, biceps femoris, gastrocnemius, tibialis anterior) with surface electrides in gait system. EMG signals were rectified and smoothed data. EMG signas were no significant difference but they also improved 6 month RTP better than 3 month RTP. More research is necessary to determine exactly what constitutes optimal rehabilitation training period for ACL patients.

A Comparative Study on the Kinetic Factors in Taekkyon Naejirgi with and without Knee Bending of Supporting Leg (택견 내지르기 동작 시 디딤발 오금질 유무에 따른 운동역학적 차이 분석)

  • Oh, Seong-Geun;Ahn, Yong-Kil
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • Naejirgi is one of the fastest, most forceful and most often being used kicks in Taekkyon games, The purpose of this study was to investigate kinetic factors on two types of Naejirgi kick, one of which uses knee bending of supporting leg and the other uses little it. 12 taekkyoners (11 males and one female) who are the students of Y University participated in this study. They have been practicing on Taekkyon for five years or more. Positions of CoM, the elapsed time of each phase, vertical ground reaction forces, joint moments and impulses of supporting leg were analyzed for this study. The results were as follows; in Naejirgi with knee bending of supporting leg than without knee bending of supporting leg, the vertical motion range of whole body CoM was larger during phase 2 and 3, the elapsed time of phase 4 were longer, players stayed longer in the nearest location to opponent, during phase 4 the vertical ground reaction forces of supporting foot were larger, and joint extension moments and angular impulses of supporting leg (especially knee) were larger. In conclusion supporting knee bending is not a useful strategy for Naejirgi, because players stay longer in the nearest position to opponent and consumed more muscle force and energy for producing the vertical momentum which is unnecessary for pushing down the opponent.

Effect of Golf Shoe Design on Kinematic Variables During Driver Swing (골프화의 구조적 특성 및 내부형태에 따른 스윙의 운동학적 변인에 미치는 영향)

  • Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.167-177
    • /
    • 2009
  • The purpose of this study was to investigate effect of golf shoe design on kinematic variables during golf swing. Five professional male golfers with shoe size 270mm were recruited for the study. Swing motion was collected using 8 high speed camera motion analysis at a sampling of 180Hz. Kinematic variables were calculated by EVaRT 4.2 software. Driver swing was divided into four events; El(adress), E2(top), E3(impact) and E4(finish). Time, peak velocity, velocity of center of mass, velocity of the foot and ankle angle during Phase 1(El-E2), Phase 2(E2-E3), and Phase 3(E3-E4) were analyzed in order to investigate the relationship between golf shoe design and swing performance. The findings indicated that type C golf shoes would be beneficial for stability and control of movement during address and swing performance. Furthermore, faster speed of golf shoes, center of mass, and both feet were observed with Type C golf shoes. It is expected that golfers with Type C golf Shoes provide greater force as they control the center of mass faster and increase rotational force during impact compared to other golf shoes.

Case Study of 4-Bar Linkage KAFO in Person With Poliomyelitis (소아마비에서 4절 연쇄 장하지보조기 사례연구)

  • Kim, Jang-Hwan;Kwon, Oh-Yun;Yi, Chung-Hwi;Cho, Sang-Hyun;Cynn, Heon-Seock;Choi, Heung-Sik
    • Physical Therapy Korea
    • /
    • v.20 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • The purpose of this study was to compare the ring lock type knee-ankle-foot orthosis (KAFO) with newly developed 4-bar linkage KAFO on the gait characteristics of persons with poliomyelitis clinically. This 4-bar linkage is the stance control type KAFO which provide the stability during stance phase and knee flexion during swing phase. Two subjects participated in this study voluntarily. We provided the customized 4-bar linkage KAFO then asked the subjects to walk in level surface and stairs under the two different KAFO conditions. The characteristics of gait in the persons with poliomyelitis were evaluated using a 3D motion analysis system and force plate. Additionally 6 minute walk test for physiological cost index were conducted using pulse oximeter to measure the energy consumption. In the results of this study, the differences of 4-bar linkage KAFO compared with ring lock type KAFO are as follows: (1) Walking speed, stride length, and step length on level increased in subjects, (2) The gait symmetry was improved by generated knee flexion and decreased pelvic external rotation on level and stairs walking, (3) Decreased vertical excursion of center of mass and pelvic elevation during swing phase was decreased on level, (4) Knee extension moment, hip flexion moment, hip and knee internal rotation moment of non-braced limb were decreased on level walking, (5) Walking speed in 6-minute walk test was increased and physiological cost index was decreased. These findings indicate that 4-bar linkage KAFO compared with ring lock type KAFO is effective in enhancing pattern, endurance, and energy consumption in level surface and stairs walking.

Analysis of Biomechanical Changes According to Mechanical Alignment of the Lower Limbs when Gait with a Material Handling (중량물 취급 보행 시 하지의 역학적 정렬에 따른 생체역학적 변화 분석)

  • Lee, Kyung-Ill;Lee, Chul-Gab;Song, Han-Soo;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.183-190
    • /
    • 2015
  • Objective : Walking with a Material handling is an activity frequently undertaken by agricultural workers in Korea, due to the nature of their work. This study aimed to investigate differences in biomechanical variables according to the mechanical alignment of the lower limbs when walking with a heavy load, and to use this as basic data in the design of various working environments to reduce the skeletomuscular burden on the knee joint. Method : The study subjects comprised of 22 right-foot dominant adult men and women aged between 20 and 23 years. The subjects were divided into a varus or valgus group according to the mechanical alignment of the lower limb by using radiographic findings. The subjects walked without any load and with a load of 10%, 20%, or 30% of their body weight held in front of them. The Kwon3d XP program was used to calculate biomechanical variables. Results : The flexion/extension moment of the knee joint showed a decreasing trend with increased load, irrespective of the mechanical alignment of the lower limb, while the varus group did not show normal compensatory action when supported by one leg at the point of maximum vertical ground reaction force. In addition, in terms of the time taken, subjects showed no difficulties in one-foot support time up to 20%/BW, but at 30%/BW, despite individual differences, there was an increase in single limb. The increased load resulted in a decrease in the ratio of standing phase to ensure physical stability. The valgus group showed a trend of increasing the stability of their center of mass with increasing load, through higher braking power in the early standing phase. Conclusion : In conclusion, although there was no statistical difference in biomechanical variables according to the mechanical alignment of the lower limbs, the varus group showed a more irregular walking pattern with a Material handling than the valgus group, partially proving the association between lower limb alignment and walking with a Material handling.

Radiographic Measurement of Ankle Lateral Stability in Normal Korean Adults (정상 한국 성인에서 발목관절 외측 안정성의 방사선학적 계측)

  • Shon, Hyun-Chul;Kim, Yong-Min;Kim, Dong-Soo;Choi, Eui-Sung;Park, Kyoung-Jin;Cho, Byung-Ki;Park, Ji-Kang;Hong, Kyung-Ho
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • Purpose: Anterior drawer and varus stress test are commonly used for radiologic evaluation of chronic lateral ankle instability. However, there are controversies regarding the method of measurement and the normal value. This study was performed to investigate radiologic normal values in normal Korean adults and to analyze differences by age and gender. Materials and Methods: Sixty Korean adults were recruited and divided in three groups (20 in their twenties, 20 in their thirties, 20 in their forties). There were 10 males and 10 females in each group. The selection criteria were no history of ankle injury and no evidence of instability on physical examination. Radiologic measurement of varus talar tilt and anterior talar translation were performed through anterior and varus stress radiographs using Telos device (150N force). The measurement was repeated twice by three researchers, and intraobserver reproducibility and interobserver reliability were analyzed. The average talar tilt and anterior talar translation were obtained. Results: Talar tilt and anterior talar translation on ankle stress radiographs had good intraobserver reproducibility and interobserver reliability. Talar tilt was average $3.7^{\circ}$ and $5.1^{\circ}$ in male and female of twenties of age, $3.9^{\circ}$ and $4.8^{\circ}$ in their thirties, $3.4^{\circ}$ and $4.5^{\circ}$ in their forties. Anterior talar translation was average 3.5 mm and 4.2 mm in their twenties, 4.1 mm and 3.8 mm in their thirties, 3.6 mm and 4.1 mm in their forties. There was no significant difference in talar tilt and anterior talar translation by age. However, there was significant difference in talar tilt by gender. Conclusion: Normal range of talar tilt angle in Korean adults was below $8.3^{\circ}$, and normal range of anterior talar translation was below 7.6 mm. It seems to be able to serve as a good reference for radiologic evaluation and for treatment of chronic lateral ankle instability.

The Effect of High-Heeled Shoes With Total Contact Inserts in the Gait Characteristics of Young Female Adults During Lower Extremity Muscle Fatigue (하지 근육의 피로상태 동안 높은 굽 신발에 적용한 전면접촉인솔이 젊은 여성의 보행 특성에 미치는 영향)

  • Ko, Eun-Hye;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kwon, Oh-Yun;Choi, Kyu-Han
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • This study investigated gait characteristics, kinematics, and kinetics in the lower extremities between two different shoe conditions (high heeled shoes (7 cm), and high heeled shoes with a total contact insert (TCI)) after lower extremity muscle fatigue. Although TCI shave been applied in high heeled shoes to increase comfort and to decrease foot pressure, no study has attempted to identify the effects of TCI in fatigue conditions. The purpose of this study was to determine the effects of walking in high heeled shoes with TCI after lower extremity muscle fatigue was induced. This study was carried out in a motion analysis laboratory at Hanseo University. A volunteer sample of 14 healthy female subjects participated. All in fatigue conditions, the subjects were divided into two groups. The muscle fatigue was induced by 40 voluntary dorsi- and plantar-flexion exercises and 40 heel-rise exercises of the dominant foot. Surface electromyography was used to confirm the localized muscle fatigue using power spectral analysis of three muscles (tibialis anterior, gastrocnemius medialis and lateralis). The results were as follows: (1) In muscle fatigue conditions, the use of TCI decreased the peak flexion angle of the hip joint significantly in the early stance phase (p<.05) and increased the peak hip flexion moment in the terminal stance phase (p<.05). (2) In muscle fatigue conditions, the application of TCI also increased peak hip power generation in the early stance phase and peak hip power absorption in the terminal stance phase (p<.05). (3) In muscle fatigue conditions, the use of TCI reduced the impact force significantly and increased the secondary peak vertical GRF. These findings suggest that the TCI may provide beneficial effects when muscle fatigue occurs for a high heeled shoe gait. Future research employing the patient population and various types of TCI materials are required to clarify the effects of TCI.

  • PDF

Study on Motion and Mooring Characteristics of Floating Vertical Axis Wind Turbine System (부유식 수직축 풍력발전 시스템의 운동특성 및 계류특성에 대한 연구)

  • Jang, Min-Suk;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Kim, Jae-Heui;Kim, Hyen-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.202-207
    • /
    • 2017
  • This paper presents the results of an experimental study on the motions and mooring characteristics of a floating vertical axis wind turbine system. Based on a comparison of regular wave experiment results, the motions of structures with different types of mooring are almost the same. Based on the tension response results of a regular wave experiment with a catenary mooring system, the mooring lines in front of the structure have a larger tension effect than the back of the structure by the drifted offset of the structure. The dynamic response spectrum of the structure in the irregular wave experiments showed no significant differences in response to differences in the mooring system. As a result of the comparison of the tension response spectra, the mooring lines have a larger value with a drifted offset for the structure, as shown in the previous regular wave experiment. The results of the dynamic response of the structure under irregular wave and wind conditions showed that the heave motion response is influenced by the coupled effect with the mooring lines of the surge and pitch motion due to the drifted offset and steady heeling. In addition, the mooring lines in front of the structure have a very large tension force compared to the mooring lines in back of the structure as a result of the drifted offset of the structure.

The Effects of Augmented Somatosensory Feedback on Postural Sway and Muscle Co-contraction in Different Sensory Conditions

  • Kim, Seo-hyun;Lee, Kyung-eun;Lim, One-bin;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.126-132
    • /
    • 2020
  • Background: Augmented somatosensory feedback stimulates the mechanoreceptor to deliver information on bodily position, improving the postural control. The various types of such feedback include ankle-foot orthoses (AFOs) and vibration. The optimal feedback to mitigate postural sway remains unclear, as does the effect of augmented somatosensory feedback on muscle co-contraction. Objects: We compared postural sway and ankle muscle co-contraction without feedback (control) and with either of two forms of somatosensory feedback (AFOs and vibration). Methods: We recruited 15 healthy subjects and tested them under three feedback conditions (control, AFOs, vibration) with two sensory conditions (eyes open, or eyes closed and the head tilted back), in random order. Postural sway was measured using a force platform; the mean sway area of the 95% confidence ellipse (AREA) and the mean velocity of the center-of-pressure displacement (VEL) were assessed. Co-contraction of the tibialis anterior and gastrocnemius muscles was measured using electromyography and converted into a co-contraction index (CI). Results: We found significant main effects of the three feedback states on postural sway (AREA, VEL) and the CI. The two sensory conditions exerted significant main effects on postural sway (AREA and VEL). AFOs reduced postural sway to a level significantly lower than that of the control (p = 0.014, p < 0.001) or that afforded by vibration (p = 0.024, p < 0.001). In terms of CI amelioration, the AFOs condition was significantly better than the control (p = 0.004). Vibration did not significantly improve either postural sway or the CI compared to the control condition. There was no significant interaction effect between the three feedback conditions and the two sensory conditions. Conclusion: Lower-extremity devices such as AFOs enhance somatosensory perception, improving postural control and decreasing the CI during static standing.

ZPM Compensation and Impedance Control for Improving Walking Stability of Biped Robots (2족 보행 로봇의 보행 안정성 향상을 위한 ZPM보상 및 임피던스 제어)

  • Jeong, Ho-Am;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1007-1015
    • /
    • 2000
  • This paper proposes an adaptive trajectory generation strategy of using on-line ZMP information and an impedance control method for biped robots. Since robots experience various disturbances during their locomotion, their walking mechanism should have the robustness against those disturbances, which requires an on-line adaptation capability. In this context, an on-line trajectory planner is proposed to compensate the required moment for recovering stability. The ZMP equation and sensed ZMP information are used in this trajectory generation strategy. In order to control a biped robot to be able to walk stably, its controller should guarantee stable footing at the moment of feet contacts with the ground as well as maintaining good trajectory tracking performance. Otherwise, the stability of robot will be significantly compromised. To reduce the magnitude of an impact and guarantee a stable footing when a foot contacts with the ground, this paper. proposes to increase the damping of the leg drastically and to modify the reference trajectory of the leg. In the proposed control scheme, the constrained leg is controlled by impedance control using the impedance model with respect to the base link. Computer simulations performed with a 3-dof environment model that consists of combination of a nonlinear and linear compliant contact model show that the proposed controller performs well and that it has robustness against unknown uneven surface. Moreover, the biped robot with the proposed trajectory generator can walk even when it is pushed with a certain amount of external force.