• Title/Summary/Keyword: FOG droplet

Search Result 14, Processing Time 0.025 seconds

A Study on Visualization of Fine Dust Captured by FOG Droplet (미세액적에 의한 미세먼지 포집 가시화 연구)

  • Oh, Jinho;Kim, Hyun Dong;Lee, Jung-Eon;Yang, Jun Hwan;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.39-45
    • /
    • 2021
  • An experiment to visualize fine dust captured by FOG droplet is conducted. Coal dust with 23.56 MMD (Mean Median Diameter) and water with 17.02 MMD is used as fine dust and FOG droplet. Long distance microscope and high-speed camera are used to capture the images of micro-scale particles sprinkled by acrylic duct. After measuring and comparing the size of the coal dust and FOG droplet to MMD, process to seize the coal dust with FOG droplet is recorded in 2 conditions: Fixed and Floated coal dust in the floated FOG droplet flow. In both conditions, a coal dust particle is collided and captured by a FOG droplet particle. A FOG droplet particle attached at the surface of the coal dust particle does not break and remains spherical shape due to surface tension. Combined particles are rotated by momentum of the particle and fallen.

Experimental Study on the Spray Characteristics of Low Pressure Fog Nozzles in Cooling Fog System (쿨링 포그 시스템의 저압 안개 노즐 분무특성에 대한 실험적 연구)

  • Ji Yeop, Kim;Cheol, Jeong;Won Jun, Kang;Jeong Ung, Kim;Jung Goo, Hong
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.173-180
    • /
    • 2022
  • Cooling fog is being used in various parts of society such as fine dust reduction, cleanliness, and temperature drop. Cooling fog has the advantage of low flow rate and ease of use compared to other spray systems. In the case of cooling fog, it was confirmed that the injection angle increased as the pressure increased and the nozzle diameter increased. In this study, the minimum injection angle was 33.61 degrees and the maximum injection angle was 107.38 degrees. It was confirmed that the larger the nozzle diameter and the smaller the pressure, the larger the droplet size. In addition, it was confirmed that the Sauter Mean Diameter (SMD) increased along the X and Y axis directions. It was confirmed that the size of the droplet decreases as it approaches the nozzle tip due to the characteristics of the nozzle design factor.

Optimal Conditions of Aerosol Flow Generation for High-density and Uniform Fog Screen (고밀도 균일 안개스크린을 위한 에어로졸 유동의 최적 생성조건)

  • Shin, Dongsoo;Song, Wooseok;Kim, Jinwon;Kim, Woojin;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • The fog screen is a device projecting the media to the aerosol flow field. As major parameters to generate dense and steady fog screen, shear stress, optical blockage ratio and SMD were obtained result through experiment. The micro droplet was generated by the piezo oscillation element, and the aerosol flow mixed with an air flow was sprayed into the vertical direction from the top of the fog screen through the 280 mm slot. For produce a dense, uniform fog screen, the shear effect, optical blockage ratio and SMD between aerosol and air curtain were measured. The minimum and maximum shear stress conditions were selected and it was confirmed that the optical transmission deviation of the aerosol flow field was small when the aerosol and air curtain flow rates were changed. When the aerosol and air curtain flow power were 18 V (1.51 m/s) and 24 V (2.55 m/s), respectively, under the condition of the minimum shear stress and laminar flow, the optical blockage ratios with the spray length were small, and it produced a most stable and high density uniform fog screen by injecting a constant of $10{\mu}m$ or less.

Micro-PIXE as a Technique for Multi-elemental Detection and Localization in Various Atmospheric Environmental Samples

  • Ma, Chang-Jin;Choi, Sung-Boo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.54-62
    • /
    • 2008
  • Microbeam PIXE, often called micro-PIXE, is one of powerful tools for analyzing a wide range of elements for various samples. Moreover, it has important applications of interest to the atmospheric science. In the present study, a qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Especially, in combination with a novel individual droplet collection method and the micro-PIXE analytical technique, the chemical specification of various individual atmospheric samples could be carried out. Here, we briefly introduce the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements for various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV $H^+$ micro beam ($1{\sim}2{\mu}m$) accelerated by 3 MeV single-end accelerator.

Greenhouse Cooling by Fog System (FOG SYSTEM 을 이용한 여름철 온실냉방)

  • 서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.60-71
    • /
    • 1999
  • This study was performed to improve underirable warm greenhouse environment by fog cooling system in summer season. The resultsof droplet size analysis and cooling effects for fog cooling system are summarized as follows ; 1. At the pump pressure of 70kgf/$\textrm{cm}^2$ , the mean (SMD) drop size was 22.6${\mu}{\textrm}{m}$ and the maximum and minimum drop size was 45.68${\mu}{\textrm}{m}$ and 1.73${\mu}{\textrm}{m}$ , respectively, and almost all of the drop size was less than 40${\mu}{\textrm}{m}$. 2. The temperature of fog cooling greenhouse with 60% shading was dropped more than 2$^{\circ}C$ below the ambient temperature , while the greenhouse temperature without shading was 1$^{\circ}C$ higher than the ambient temperature. 3. It was found that fog spraying intervals were significantly influential on cooling effect. 4. When the greenhouse was ventilated sufficiently by natural vent system, green house temperature could be maintained by 2.5$^{\circ}C$ lower than the ambient temperature, while it was difficult to drop the greenhouse temperature below ambient temeperature without sufficient ventilation. 5. It was found that the temperature of experimental greenhouse could be maintained 3$^{\circ}C$ to 14$^{\circ}C$ lower that of control greenhouse though there were variations depending on experimental and weather conditions.

  • PDF

Experimental study on the generation of ultrafine-sized dry fog and removal of particulate matter (초미세 크기의 마른 안개 생성과 이를 이용한 미세먼지 제거 연구)

  • Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • With the fine particulate matter (PM) poses a serious threat to public health and the environment. The ultrafine PM in particular can cause serious problems. This study investigates the effectiveness of a submicron dry fog system in removing fine PM. Two methods are used to create fine dust particles: burning incense and utilizing an aerosol generator. Results indicate that the dry fog system effectively removes fine dust particles, with a removal efficiency of up to 81.9% for PM10 and 61.9% for PM2.5 after 30 minutes of operation. The dry fog, characterized by a mean size of approximately 1.5 ㎛, exhibits superior performance in comparison to traditional water spraying methods, attributed to reduced water consumption and increased contact probability between water droplets and dust particles. Furthermore, experiments with uniform-sized particles which sizes are 1 ㎛ and 2 ㎛ demonstrate the system's capability in removing ultrafine PM. The proposed submicron dry fog system shows promise for mitigating fine dust pollution in various industrial settings, offering advantages such as energy consumption and enhanced safety for workers and equipment.

A Study on the Spray Characteristics of the Cold-Fog Spray with Ultrasonic Forcing (초음파적용 상온연무기의 분무특성에 관한 연구)

  • Song Min-Geun;Lee Kyung-Youl;Son Sung-Woo;La Woo-Jung;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.299-302
    • /
    • 2002
  • Characteristics of the twin fluid spray with ultrasonic forcing are examined in order to obtain the high efficiency of cold fog spray of the automatic pest control machine which has been widely used for the equipment cultivation recently. An electrostrictive vibrator of PZT BLT and a magnetostrictive vibrator of ${\pi}type$ with 28 kHz are applied as the ultrasonic transducer. All experiments are made and observed in 4 methods of spray ; a conventional spray method without ultrasonic forcing, an indirect vibration method with ultrasonic forcing, an improving duality method by ultrasonic forced within liquid, and a combined use method with both of the indirect vibration method and the improving quality method. In results, It was clarified that the ultrasonic effects the atomization of spray droplets and its efficiency is about $10{\%}$ and especially much more in the case of the combined use method.

  • PDF

Application of Microbeam Technique to Atmospheric Science

  • Ma Chang-Jin
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2005.11a
    • /
    • pp.67-74
    • /
    • 2005
  • Microbeam PIXE, often called micro-PIXE, is a powerful tool tot analyzing a wide range of elements for various samples, as well as, it has important applications of interest to the atmospheric science. In this study, qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Here, we present the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements lot various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV H+ micro beam (1-2 ${\mu}m$) accelerated by 3 MV single-end accelerator.

  • PDF

Foodborne Pathogen Reduction을 위한 항균제의 새로운 Delivery System인 Aerosolization

  • O, Se-Uk;Gang, Dong-Hyeon
    • Bulletin of Food Technology
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • Aims: As a preliminary experiment on new sanitizer delivery tools, the efficacy of aerosolizedsanitizer on foodborne pathogens was investigated in larger model chamber system.Methods: Peroxyacetic acid and hydrogen peroxide were aerosolized in a model system againstartificially inoculated target microorganisms on laboratory media. Cultures of 4 different foodborne pathogens were inoculated and affixed onto 3 different heights (bottom, wall, and ceiling), and 3different orientations (face-down, vertical, and face-down) inside a commercial semi-trailer cabinet(14.6 x 2.6 x 2.8 m). Sanitizer was aerosolized into 2 m droplet size fog and treated for 1 h atambient temperature.Results: Populations of Bacillus cereus, Listeria innocua, Staphylococcus aureus, and Salmonellatyphimurium were reduced by an average of 3.09, 7.69, 6.93 and 8.18 log units per plate, respectively.Interestingly, L. innocua, Staph. aureus, and Salm. typhimurium showed statistically not different (P$\leq$ 0.05) reduction patterns relative to height and orientation that were never expected in a sprayingsystemConclusion and significance: Aerosolized sanitizers diffuse like gaseous sanitizers, so it has greatpotential for use in commercial applications.

  • PDF

Control of Bemisia tabaci by Two-Fluid Fogging System (이류체 포그시스템을 활용한 가루이 방제)

  • Kim, Sung-Eun;Lee, Sang-Don;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.394-398
    • /
    • 2011
  • The effect of two-fluid fogging system on the control of Bemisia tabaci in tomato cultivation was evaluated in a greenhouse. The number of Bemisia tabaci was decreased by 87% from the fog treatment for 7 days. During the fog treatment, the mean daily temperature was decreased by $2^{\circ}C$ and the mean daily relative humidity was increased by 3~4% as compared to the non-treatment. The reduction of Bemisia tabaci in the treatment might not be resulted from the differences in temperature and humidity in the greenhouse. The sound coming from the two-fluid fogging system did not affect when it was operated without water inside. Therefore it was concluded that water droplets coming out the nozzle reduced the growth and the movement of whiteflies because the suspension of tiny water droplets were attached on the skin of whiteflies.