• Title/Summary/Keyword: FMR signal

Search Result 5, Processing Time 0.018 seconds

A Study on Sample Size Dependence of Ferromagnetic Resonance in Polycrystalline Magnesium Ferrites (마그네슘 페라이트에서 강자성 공명의 시료 크기 의존성 연구)

  • 한기태;백종규
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.163-170
    • /
    • 1995
  • Sample size effect on ferromagnetic resonance (FMR) in polycrystalline MgFe2O4 has been investigated. The signal intensity (SI), resonance field (Hres) and line width (ΔH) were found to increase proportionally to r3 with the increase of sample radius. The r3-depencence of SI means the complete penetration of rf-field into the sample, and the broadening of ΔH due to the sample size appears to be closely related to the amount of scattering sources like pores. Meanwhile, the values of Hres (0) and ΔH (0) obtained by extrapolating the data of Hres (r) and ΔH (r) measured at several sizes to r=0, were in good agreement with those calculated using the Schlomann's equations for internal field and ΔH, respectively. This result indicates that the discrepancy between the measured FMR parameters and those calculated by Schlomann's equation could be ascribed to the effect of sample size. Thus it is suggested that the size effect on FMR should be removed for the analysis of the FMR parameters. Meanwhile, our result for the size dependance of ΔH was found to be contradictory to those reported by Dionne, where ΔH 1/r at a given surface roughness. This discrepancy appears to arise from the difference in the definition of reading the line width.

  • PDF

Size Dependence of FMR Linewidth in Iron Oxide Nanoparticles (산화철 나노입자의 크기에 따른 강자성 공명 신호의 선폭 특성)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • We measured the ferromagnetic resonance (FMR) signal using the monodisperse iron oxide nanoparticles with size D=4.67 nm, 5.64 nm and 6.34 nm synthesized by using the thermal decomposition method, respectively. The measured ferromagnetic resonance signals were compared with the calculated ones for superparamagnetic nanoparticles with lognormal volume distribution. The FMR linewidth broadening was propositional to tanh($V^2$), where V was volume of nanoparticles. The narrow linewidth of small size nanoparticles was due to the surface spins, while the broad linewidth of large size nanoparticles was due to the bulk spins affected by the crystalline structure of iron oxide nanoparticles. The superposition of surface and bulk effect was confirmed at D=5.64 nm nanoparticles, which was near the critical size for linewidth transition from surface effect to bulk effect.

Thermal Annealing Effect on Ferromagnetic Resonance Properties in CoFeB/MgO Thin Film (CoFeB/MgO 박막 재료의 열처리에 따른 강자성공명 특성)

  • Yoon, Seok-Soo;Kim, Dong-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.10-14
    • /
    • 2011
  • We have measured the ferromagnetic resonance (FMR) signal in as deposited and $400^{\circ}C$ annealed CoFeB/MgO thin film to investigate the annealing effect on magnetic anisotropies and FMR linewidth (${\Delta}H_{PP}$). The uniaxial anisotropy field ($H_{K1}$) was only observed in the as deposited sample. Whereas, in the $400^{\circ}C$ annealed sample, the biaxial anisotropy field ($H_{K2}$) was additionally observed in accompany with uniaxial anisotropy field ($H_{K1}$). The appearance of biaxial anisotropy fields was originated from the crystalline growth of bcc CoFeB(001) from the MgO(001) interface and by the B diffusion during thermal annealing. Also, the ${\Delta}H_{PP}$ of $400^{\circ}C$ annealed sample was increased compared with that of as deposited sample, which was due to the broad distribution of the magnetization axis by the biaxial anisotropy.

Analysis of Low Field Microwave Absorption Properties in CoFe/MnIr Thin Film (CoFe/MnIr 박막 재료에서 저자장 마이크로파 흡수 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.74-78
    • /
    • 2015
  • We measured the low field microwave absorption (LFMA) and ferromagnetic resonance (FMR) signals at various magnetic field angle in exchange biased CoFe/MnIr thin film. The LFMA signals were dominantly related to the magnetization rotation process. In order to analyze the LFMA signal, we calculated transverse magnetization ($M_{\tau}$) and permeability (${\mu}_{\tau}$) for CoFe/MnIr thin film by using S-W model, which magnetic parameters of exchange bias ($H_{ex}$ = 58.5 Oe) and uniaxial anisotropy field ($H_k$ = 30Oe) was obtained from FMR signals. The LFMA signal at hard axis showed similar behavior compared with that of $M_{\tau}$. As the magnetic field angle approach to the perpendicular to hard axis, the LFMA signals were depending on both of $M_{\tau}$ and ${\mu}_{\tau}$.

Analysis of Microwave Permeability and Damping Constant in Amorphous CoFeHfO Thin Film (비정질 CoFeHfO 박막 재료의 마이크로파 투자율 및 감쇠상수 분석)

  • Kim, Dong-Young;Yoon, Seok-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.147-151
    • /
    • 2009
  • The saturation magnetization and uniaxial anisotropy constant were obtained from magnetization and torque curves measurement in high resistive CoFeHfO thin film. The measured results were used for the analysis of the microwave complex permeability based on Landau-Lifshitz-Gilbert (LLG) theory. The high resistive CoFeHfO thin films showed very low damping constants of ${\alpha}$ = 0.014. The results are interpreted in terms of various magnetic phase with very low damping constant, which were existing inside the CoFeHfO thin film, through the linewidth analysis of the ferromagnetic resonance signal with magnetic field.