• Title/Summary/Keyword: FMEA (Failure Mode Effects Analysis)

Search Result 66, Processing Time 0.025 seconds

A Study on FMEA for Railway Vehicle (철도차량의 고장모드 영향분석(FMEA))

  • Park, Byoung-Noh;Joo, Hae-Jin;Lee, Chang-Hwan;Lim, Sung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.162-168
    • /
    • 2009
  • FMEA(Failure Mode and Effect Analysis) is a failure analysis method for the system to identify the potential failure modes, and their effects and causes to reduce or mitigate the critical effects of the system. FMEA for railway was introduced with reliability of railway system, and this was used for identifying and analysing the possible hazards qualitatively to meet the requirements in early stage of business. In general, the overall failure data of system could be managed from design stage by FMEA, and also the countermeasures to prevent many predicted failures could be established by identification of failure modes and assement of failure effects by FMEA. Using these advantages of FMEA, the effectiveness of reliability improvement could be expected if FMEA is applied continuously in operation stage. It is essential that railway vehicles are maintained with high level of safety and reliability not to happen any failures in operation. This paper is proposed the proper FMEA for maintenance of railway vehicles compared with existing FMEA.

  • PDF

The Failure Mode and Effects Analysis Implementation for Laser Marking Process Improvement: A Case Study

  • Deng, Wei-Jaw;Chiu, Chung-Ching;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.8 no.1
    • /
    • pp.137-153
    • /
    • 2007
  • Failure mode and effects analysis (FMEA) is a preventive technique in reliability management field. The successful implementation of FMEA technique can avoid or reduce the probability of system failure and achieve good product quality. The FMEA technique had applied in vest scopes which include aerospace, automatic, electronic, mechanic and service industry. The marking process is one of the back ends testing process that is the final process in semiconductor process. The marking process failure can cause bad final product quality and return although is not a primary process. So, how to improve the quality of marking process is one of important production job for semiconductor testing factory. This research firstly implements FMEA technique in laser marking process improvement on semiconductor testing factory and finds out which subsystem has priority failure risk. Secondly, a CCD position solution for priority failure risk subsystem is provided and evaluated. According analysis result, FMEA and CCD position implementation solution for laser marking process improvement can increase yield rate and reduce production cost. Implementation method of this research can provide semiconductor testing factory for reference in laser marking process improvement.

Development of the FMECA Process and Analysis Methodology for the Railroad System (철도시스템 FMECA 수행 절차 및 분석 기법 개발에 관한 연구)

  • Park, Kwon-Shik;Kim, Tae-Woong;Jeong, Hyun-Yong;Park, Jun-Seo
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.251-261
    • /
    • 2006
  • FMEA(Failure Mode and Effects) is a procedure for the analysis of a system to identify the potential failure modes, and their effects and causes to reduce or mitigate the critical effects of the system. Recently, FMEA is used in various industries and it is specialized in each industry. For instance, MIL-1629a in Military industry, SAE-J1739 in Automotive industry and other industry are using specialized FMEA method. Though Railroad industry requires the high reliability system, it does not have the FMEA method which is specialized to them. So in this paper, we examined the MIL-1629a, SAE-J1739, IEC-60812 and compared those standards. Furthermore, we propose the FMEA method that is specialized to the railroad system.

  • PDF

Case Study of Electronic Fuel Injection Powertrain System FMEA Using Model-Based Fault Injection technique (모델 기반 결함 주입 기법을 이용한 Electronic Fuel Injection 전장 시스템 FMEA 사례연구)

  • Ye-ju Kim;Ye-won Na;Dong-min Lee;Ju-Young Kim;Jong-whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.436-446
    • /
    • 2023
  • In the field of safety-critical systems, analyzing the effects of various failure factors (failure modes) is essential through Failure Mode and Effects Analysis (FMEA). However, with the increasing importance of software in systems, applying FMEA analysis to the design phase has become challenging. This paper proposes the use of Automatic FMEA, which can automatically perform FMEA using model-based design techniques, and presents a case study of FMEA for automotive engines. A comparison is made between the model-based Automatic FMEA analysis tool and existing FMEA tools. The study aims to demonstrate the performance of the Automatic FMEA analysis tool and propose future research plans.

A Study on Failure Mode and Effect Analysis (FMEA) for Preoperative Risk Prevention (오류유형 영향분석(FMEA)을 적용한 수술준비 위험예방활동의 효과)

  • Kim, Chang Hee;Lee, Mi Hyang
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.22 no.5
    • /
    • pp.415-423
    • /
    • 2016
  • Purpose: The purpose of this research was to provide patients with safe preoperative preparatory procedures by removing any risk factors from the preparatory procedures by using failure mode and effects analysis, which is a prospective risk-managing tool. Methods: This was a research design in which before and after conditions of a single group were studied, Failure mode and effects analysis were applied for the preparatory procedures done before operations. Results: The preparation omission rate before the operation decreased from 2.70% to 0.04%, and operation cancellation rate decreased from 0.48% to 0.08%. Conclusion: Failure mode and effects analysis which remove any risk factors for patients in advance of the operation is effective in preventing any negligent accidents.

Semiquantitative Failure Mode, Effect and Criticality Analysis for Reliability Analysis of Solid Rocket Propulsion System (고체 로켓 추진 기관의 신뢰성 분석을 위한 준-정량적 FMECA)

  • Moon, Keun Hwan;Kim, Jin Kon;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.631-638
    • /
    • 2015
  • In this study, semiquantitative failure mode, effects, and criticality analysis (FMECA) for the reliability analysis of a solid rocket propulsion system is performed. The semiquantitative FMECA is composed of failure mode and effects analysis (FMEA) and criticality analysis (CA). To perform FMECA, the structure of the solid rocket propulsion system is divided into 43 parts down to the component level, and FMEA is conducted at the design stage considering 137 potential failure modes. CA is then conducted for each failure mode, during which the criticality number is estimated using the failure rate databases. The results demonstrate the relationship between potential failure modes, causes, and effects, and their risk priorities are evaluated qualitatively. Additionally, several failure modes with higher criticality and severity values are selected for high-priority improvement.

Development of a Failure Mode and Effects Analysis Based Risk Assessment Tool for Information Security

  • Lai, Lotto Kim Hung;Chin, Kwai Sang
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.87-100
    • /
    • 2014
  • Risk management is recognized as a significant element in Information Security Management while the failure mode and effects analysis (FMEA) is widely used in risk analysis in manufacturing industry. This paper aims to present the development work of the Information Security FMEA Circle (InfoSec FMEA Circle) which is used to support the risk management framework by modifying traditional FMEA methodologies. In order to demonstrate the "appropriateness" of the InfoSec FMEA Circle for the purposes of assessing information security, a case study at Hong Kong Science and Technology Parks Corporation (HKSTP) is employed. The "InfoSec FMEA Circle" is found to be an effective risk assessment methodology that has a significant contribution to providing a stepwise risk management implementation model for information security management.

FMEA Measures for Service Failure Management (서비스 실패 관리를 위한 FMEA 이용 방안)

  • Kim, Hyun Jung;An, Qin Rui;Kim, Soo Wook
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.1
    • /
    • pp.43-61
    • /
    • 2014
  • Purpose: This study identifies preventive measures for VOC management by analyzing the causes and effects of factors that contribute to high risk service failure using FMEA on KORAIL VOC data. Methods: Two research methods were used. First, a Risk Priority Number (RPN) was assigned to each KORAIL VOC based on Failure Mode and Effect Analysis (FMEA). Second, multiple regression analysis was run with RPN factors that include severity, occurrence, and detection as the independent variables and customer dissatisfaction as the dependent variable. Results: Multiple regression analysis showed that RPN factors including severity, occurrence, and detection had significantly positive relationship with customer dissatisfaction. Based on these results, an FMEA was performed on VOC categories with high RPN for railroad stations including platform, ticketing, ticket verification, parking, and escalator, and VOC categories with high RPN for trains including entrance doors, cafes, air quality, announcement, and ticket verification. Conclusion: This study has practical implications to service failure management. A priority order using FMEA was established for the list of customer dissatisfactions that should be addressed to actively manage service failure, and strategies for tackling this priority list are offered.

Fuzzy FMEA for Rotorcraft Landing System (회전익 항공기 착륙장치에 대한 퍼지 FMEA)

  • Na, Seong-Hyeon;Lee, Gwang-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.751-758
    • /
    • 2021
  • Munitions must be analyzed to identify any risks for quality assurance in development and mass production. Risk identification for parts, compositions, and systems is carried out through failure mode effects analysis (FMEA) as one of the most reliable methods. FMEA is a design tool for the failure mode of risk identification and relies on the RPN (risk priority number). FMEA has disadvantages because its severity, occurrence, and detectability are rated at the same level. Fuzzy FMEA applies fuzzy logic to compensate for the shortcomings of FMEA. The fuzzy logic of Fuzzy FMEA is to express uncertainties about the phenomenon and provides quantitative values. In this paper, Fuzzy FMEA is applied to the failure mode of a rotorcraft landing system. The Fuzzy rule and membership functions were conducted in the Fuzzy model to study the RPN in the failure mode of a landing system. This method was selected to demonstrate crisp values of severity, occurrence, and detectability. In addition, the RPN was obtained. The results of Fuzzy FMEA for the landing system were analyzed for the RPN and ranking by fuzzy logic. Finally, Fuzzy FMEA confirmed that it could use the data in quality assurance activities for rotorcraft.

Practical Criteria for Process FMEA (현실적 공정 FMEA 평가기준 개발)

  • Kim, T.H.;Jang, Joong-Soon;Lee, E.Y.
    • Journal of Applied Reliability
    • /
    • v.10 no.2
    • /
    • pp.123-135
    • /
    • 2010
  • Failure mode and effects analysis (FMEA) is a widely used technique to assess or to improve reliability of products or processes at early stage of development. Traditionally, the prioritization of failures for corrective actions is performed by evaluating risk priority numbers (RPN). In practice, due to insufficient evaluation criteria specific to related products and processes, RPN is not always evaluated properly. This paper reestablishes an effective methodology for prioritization of failure modes in FMEA procedure. Revised evaluation criteria of RPN are devised and a refined FMEA sheet is introduced. To verify the proposed methodology, it is applied to inspection processes of PCB products.