• Title/Summary/Keyword: FMCW radar sensor

Search Result 28, Processing Time 0.029 seconds

Noise Removal of FMCW Scanning Radar for Single Sensor Performance Improvement in Autonomous Driving (자율 주행에서 단일 센서 성능 향상을 위한 FMCW 스캐닝 레이더 노이즈 제거)

  • Wooseong Yang;Myung-Hwan Jeon;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.271-280
    • /
    • 2023
  • FMCW (Frequency Modulated Continuous Wave) radar system is widely used in autonomous driving and navigation applications due to its high detection capabilities independent of weather conditions and environments. However, radar signals can be easily contaminated by various noises such as speckle noise, receiver saturation, and multipath reflection, which can worsen sensing performance. To handle this problem, we propose a learning-free noise removal technique for radar to enhance detection performance. The proposed method leverages adaptive thresholding to remove speckle noise and receiver saturation, and wavelet transform to detect multipath reflection. After noise removal, the radar image is reconstructed with the geometric structure of the surrounding environments. We verify that our method effectively eliminated noise and can be applied to autonomous driving by improving the accuracy of odometry and place recognition.

Studies on IF noise caused by transmitter signal leakages of the W-band homodyne FMCW radar with a single antenna configuration (단일 안테나를 사용하는 W-대역 호모다인 FMCW 레이더의 누설신호에 의한 IF 잡음에 관한 연구)

  • Park Jung-Dong;Kim Wan-Joo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.49-56
    • /
    • 2005
  • In this paper, we describe a solution to improve the effects of the transmitter leakage signals on the frequency modulated continuous wave (FMCW) radar with a single antenna configuration. We analyze characteristics of the IF noise caused by insufficient isolation between transmitter and receiver. The magnitude of the intermediate frequency (IF) noise from a front-end can be reduced by matching the LO signal delay time with that of the largest leakage source. Because the IF noise has periodic singularities at nT$_{m}$/2, t=0,1,2$\cdots$, we find that spectrum of the IF noise due to the leakage signals is very similar to that of the VCO moduation signal except low frequency elements in the vicinity of DC. Based on the studies, we fabricated a W-band homodyne FMCW radar sensor and verified the proposed solution. The results are applicable to design of the homodyne FMCW radar with a single antenna configuration.

Design and Implementation of Human and Object Classification System Using FMCW Radar Sensor (FMCW 레이다 센서 기반 사람과 사물 분류 시스템 설계 및 구현)

  • Sim, Yunsung;Song, Seungjun;Jang, Seonyoung;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.364-372
    • /
    • 2022
  • This paper proposes the design and implementation results for human and object classification systems utilizing frequency modulated continuous wave (FMCW) radar sensor. Such a system requires the process of radar sensor signal processing for multi-target detection and the process of deep learning for the classification of human and object. Since deep learning requires such a great amount of computation and data processing, the lightweight process is utmost essential. Therefore, binary neural network (BNN) structure was adopted, operating convolution neural network (CNN) computation in a binary condition. In addition, for the real-time operation, a hardware accelerator was implemented and verified via FPGA platform. Based on performance evaluation and verified results, it is confirmed that the accuracy for multi-target classification of 90.5%, reduced memory usage by 96.87% compared to CNN and the run time of 5ms are achieved.

The Study of Improved Safety of Signalling System using Communication (통신에 의한 신호시스템의 안전성 확보에 관한 연구)

  • Baek, Jong-Hyen;Wang, Jong-Bae;Byun, Yeun-Sub;Park, Hyun-Jun;Han, Young-Jae;Kim, Kil-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1368-1370
    • /
    • 2000
  • The automotive environment presents to the FMCW radar sensor a multitude of moving and fixed targets and the sensor must detect and track only the targets which may pose a threat of collision or passengers accident. The sensor must function accurately in the presence of background echoes generated by moving and fixed targets, ground reflections, atmospheric noises, including rains, fog, and, snow and noise generated within the receiver. False detection of the desired target in this environment may issue false alarms. That may be dangerous to the passenger and the vehicle. A high false alarm rate is totally unacceptable. The false alarm mechanism consists of noise peaks, crossing the threshold and the undesired response of the system to off lane targets which are not potentially hazardous to the radar equipped vehicle. This paper presents an improve technique safety performance for driver-less operation using FMCW radar sensors.

  • PDF

A Study on the Development of Level Sensor using Frequency Modulated Continuous Wave (주파수 변조 연속파를 이용한 레벨 센서 개발에 관한 연구)

  • 박동국;한태경;박인용;윤천수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.299-303
    • /
    • 2004
  • In this paper, it is presented a level sensor for measuring a level of the contents of cargo tank using frequency modulated continuous wave(FMCW). The frequency range is 10∼11 GHz, the radar cross section(RCS) of target is 0.8 ㎡ of metal plate. the experiment is performed in laboratory and open ground, the sweep time of the signal is 100 ms, the pyramidal horn antenna of about 20 dBi gain is used, and input power of antenna is about 5 dBm. the beat frequency according to the target moving to 40 m is measured. There is a good agreement between measured and calculated results. But the resolution of the FMCW radar is measured about 10 cm due to nonlinear of voltage controlled oscillator(VCO).

  • PDF

Single Antenna Radar Sensor with FMCW Radar Transceiver IC (FMCW 송수신 칩을 이용한 단일 안테나 레이다 센서)

  • Yoo, Kyung Ha;Yoo, Jun Young;Park, Myung Chul;Eo, Yun Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.632-639
    • /
    • 2018
  • This paper presents a single antenna radar sensor with a Ku-band radar transceiver IC realized by 130 nm CMOS processes. In this radar receiver, sensitivity time control using a DC offset cancellation feedback loop is employed to achieve a constant SNR, irrespective of distance. In addition, the receiver RF block has gain control to adjust high dynamic range. The RF output power is 9 dBm and the full chain gain of the Rx is 82 dB. To reduce the direct-coupled Tx signal to the Rx in a single antenna radar, a stub-tuned hybrid coupler is adopted instead of a bulky circulator. The maximum measured distance between the horn antenna and a metal plate target is 6 m.

A Study on X-band Frequency Synthesizer for Radar Transceiver (레이더 송수신기용 X 밴드 주파수 합성기에 관한 연구)

  • Park, Dong-Kook;Lee, Hyun-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.444-448
    • /
    • 2006
  • In this paper, a frequency synthesizer for X-band FMCW radars is proposed. Some X-band FMCW radars have been used as a level sensor for tanker ship and the resolution of the level sensor may be mainly depend on linearity of frequency sweep. For a linear frequency sweep. the proposed synthesizer employs a phase-locked loop using prescalars and a high speed digital PLL chip. The measured results show that the linear frequency sweep range is from 10 GHz to 11 GHz and the output power of the synthesizer is minium 7 dBm. and the phase noise is about -80 dBc/Hz at 100 KHz offset from 11 GHz.

A Study on the Development of Level Sensor using Frequency Modulated Continuous Wave (주파수 변조 연속파를 이용한 레벨 측정 시스템 개발에 관한 연구)

  • Park, Dong-Kook;Han, Tae-Kyoung;Park, In-Yong;Yoon, Chun-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.497-501
    • /
    • 2004
  • In this paper, it is presented a level sensor for measuring a level of the contents of cargo tank using frequency modulated continuous wave(FMCW). The frequency range is 10∼11 GHz, the radar cross section(RCS) of test target is $0.8\textrm{m}^2$ of metal plate. The experiment is performed in laboratory and open ground, the sweep time of the signal is 100 ms, the pyramidal horn antenna of about 22 dBi gain is used, and input power of antenna is about 8 dBm The beat frequency according to the target moving to 40 m is measured. There is a good agreement between measured and calculated results. But the resolution of the FMCW radar is measured about 10 cm due to nonlinear of voltage controlled oscillator(VCO).

An Automotive Radar Target Tracking System Design using ${\alpha}{\beta}$ Filter and NNPDA Algorithm (${\alpha}{\beta}$ 필터 및 NNPDA 알고리즘을 이용한 차량용 레이더 표적 추적 시스템 설계)

  • Bae, JunHyung;Hyun, EuGin;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • Automotive Radar Systems are currently under development for various applications to increase accuracy and reliability. The target tracking is most important in single or multiple target environments for accuracy. The tracking algorithm provides smoothed and predicted data for target position and velocity(Doppler). To this end, the fixed gain filter(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter) and dynamic filter(Kalman filter, Singer-Kalman filter, etc) are commonly used. Gating is used to decide whether an observation is assigned to an existing track or new track. Gating algorithms are normally based on computing a statistical error distance between an observation and prediction. The data association takes the observation-to-track pairings that satisfied gating and determines which observation-to-track assignment will actually be made. For data association, NNPDA(Nearest Neighbor Probabilistic Data Association) algorithm is proposed. In this paper, we designed a target tracking system developed for an Automotive Radar System. We show the experimental results of the 77GHz FMCW radar sensor on the roads. Four tracking algorithms(${\alpha}{\beta}$ filter, ${\alpha}{\beta}{\gamma}$ filter, 2nd order Kalman filter, Singer-Kalman filter) have been compared and analyzed to evaluate the performance in test scenario.

Design of 24 GHz Radar with Subspace-Based Digital Beam Forming for ACC Stop-and-Go System

  • Jeong, Seong-Hee;Oh, Jun-Nam;Lee, Kwae-Hi
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.827-830
    • /
    • 2010
  • For an adaptive cruise control (ACC) stop-and-go system in automotive applications, three radar sensors are needed because two 24 GHz short range radars are used for object detection in an adjacent lane, and one 77 GHz long-range radar is used for object detection in the center lane. In this letter, we propose a single sensor-based 24 GHz radar with a detection capability of up to 150 m and ${\pm}30^{\circ}$ for an ACC stop-and-go system. The developed radar is highly integrated with a high gain patch antenna, four channel receivers with GaAs RF ICs, and back-end processing board with subspace based digital beam forming algorithm.