• Title/Summary/Keyword: FMCW radar

Search Result 168, Processing Time 0.035 seconds

Implementation of Voltage Control Dielectric Resonator Oscillator for FMCW Radar (FMCW 레이더용 전압제어 유전체 발진기의 구현)

  • 안용복;박창현;김장구;최병하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.906-911
    • /
    • 2004
  • In this paper, a VCDRO(Voltage Control Dielectric Resonator Oscillator) applied to FMCW(Frequency Modulated Continuous Wave)Radar as stable source is implemented and constructed with a MESFET(Metal-semiconductor Field-Effect Transistor) for low noise, a dielectric resonate. of high frequency selectivity, and high Q varator diode to obtain a good phase noise performance and stable sweep characteristics. The designed circuits is simulated thrash harmonic balance simulation technique to provide the optimum performance. The measured result of a fabricated VCDRO shows that output is 2.22㏈m at 12.05GHz, harmonic suppression -30㏈c, phase noise -130㏈c at 100KHz offset, and sweep range of varator diode $\pm$18.7MHz, respectively. This oscillator will be available to FMCW Radar.

Analysis of a Target's Power-Spill Patterns Using Squint SAR Images (Squint SAR 영상 내 목표물 분산전력패턴 분석기법)

  • Hwang, Ji-Hwan;Kim, Duk-Jin;Lee, Seung-Chul;Han, Seung-Hoon;Cho, Jae-Hyoung;Moon, Hyoi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.722-730
    • /
    • 2018
  • This paper presents an analysis technique for estimating the properties of a target's power-spill patterns observed in reconstructed SAR images, which in turn depend on the setup squint angle of the FMCW signal-based SAR system. The target responses observed in the reconstructed SAR images were affected by the range-direction and azimuth-direction of a wave projected on the ground, and the obtained results were analyzed by applying three-dimensional squinted SAR geometry. Furthermore, the rotation patterns were verified through simulations based on the FMCW signal model and back-projection algorithm. This paper summarizes the obtained evaluation results as a function of SAR geometry and squint angle.

Implementation of Precise Level Measurement Device using Zoom FFT (Zoom FFT를 이용한 정밀 레벨 측정 장치의 구현)

  • Ji, Suk-Joon;Lee, John-Tark
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.504-511
    • /
    • 2012
  • In this paper, level instrument is implemented using beat frequency for distance measurement which means the difference between Tx and Rx signal frequency from FMCW Radar Level Transmitter. Beat frequency is analyzed through Fast Fourier Transform of which frequency precision can be improved by applying Zoom FFT. Distance precision is improved from 146.5[mm] to 5[mm] using the advantage of Zoom FFT which can raise the frequency precision without changing the sampling frequency or FFT point number to be fixed in the beginning of designing signal processing. Also, measurement error can be reduced within 2[mm] by incresing the FFT points using the method of Spline interpolation. For verifying the effectiveness of this Zoom FFT to FMCW Radar Level Transmitter, test bench is made to measure the distance for every 1[mm] between 700[mm] and 2000[mm] and measurement error can be checked in the range of ${\pm}2$[mm].

Design And Implementation of X-Band Frequency Synthesizer for Radar Transceiver (Radar Transceiver용 X-밴드 PLL 주파수 합성기 설계 및 제작)

  • Lee, Hyun-Soo;Park, Dong-Kook
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • A frequency synthesizer of 10 GHz $\sim$ 11 GHz for FMCW radar is designed and implemented by the form of indirect frequency synthesizer of a single loop structure. The synthesizer uses a high speed digital PLL chip. It is difficult to divide directly by using a program counter of PLL chip because the output frequency of VCO is 10 GHz $\sim$ 11 GHz, so we lower the frequency to 625 MHz $\sim$ 687.5 MHz by using a prescaler, and then divide the frequency by the program counter. The output frequency sweep of VCO from 10 GHz to 11 GHz is measured.

  • PDF

W-Band Radar Altimeter for Drones (드론용 W-대역 레이다 고도계)

  • Lee, Yong-Seok;Lee, Gwon-Hak;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung;Song, Reem
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.314-319
    • /
    • 2019
  • In this study, we propose a W-band frequency modulated continuous wave(FMCW) radar altimeter that can measure the altitude based on the frequency differences of transmitted and received signals. This W-band FMCW system is powered by an altitude control algorithm, which we propose to help prevent collisions of drones with obstacles in real deployment by measuring the relative altitude. It is shown that this algorithm enables the drone to be positioned within a 3 % error of altitude from the desired input height. The chip used in the W-band transmitter and receiver was fabricated using a 65-nm CMOS process, and a horn antenna was directly fed by incorporating an embedded waveguide feeder into the chip. The clutter spectra observed in terrains including soil, grass, and calm lake water were measured and compared, confirming the reflectivity characteristics of various surfaces of different water contents.

Interference Mitigation by High-Resolution Frequency Estimation Method for Automotive Radar Systems (고해상도 주파수 추정 기법을 통한 차량용 레이더 시스템의 간섭 완화에 관한 연구)

  • Lee, Han-Byul;Choi, Jung-Hwan;Lee, Jong-Ho;Kim, Yong-Hwa;Kim, YoungJoon;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.254-262
    • /
    • 2016
  • With the increased demand for automotive radar systems, mutual interference between vehicles has become a crucial issue that must be resolved to ensure better automotive safety. Mutual interference between frequency modulated continuous waveform (FMCW) radar system appears in the form of increased noise levels in the frequency domain and results in a failure to separate the target object from interferers. The traditional fast fourier transform (FFT) algorithm, which is used to estimate the beat frequency, is vulnerable in interference-limited automotive radar environments. In order to overcome this drawback, we propose a high-resolution frequency estimation technique for use in interference environments. To verify the performance of the proposed algorithms, a 77GHz FMCW radar system is considered. The proposed method employs a high-resolution algorithm, specially the multiple signal classification and estimation of signal parameters via rotational invariance techniques, which are able to estimate beat frequency accurately.

Development of Multi-Band Multi-Mode SDR Radar Platform (다중 대역 다중 모드 SDR 레이다 플랫폼 개발)

  • Kwag, Young-Kil;Woo, In-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.949-958
    • /
    • 2016
  • This paper presents the new development result of the multi-band, the multi-mode SDR(Software Defined Radar) platform. The SDR hardware platform is implemented by using the reconfigurable multi-band RF transceiver and antenna modules of S, X, and K-bands, and a programmable signal processing module. The SDR software platform is implemented by using the multi-mode waveform generation of CW, Pulse, FMCW, and LFM Chirp as well as the adaptable algorithm library of signal processing and open API software modules. Through the integrated test of the SDR platform, the operational performance was verified in real-time. Also, through the field-application test, the ground target and air-vehicle drone target were successfully detected and their test results were presented.

Developments of Signal processing Parts of Vehicle Collision Avoidance System using FMCW Radar (FMCW 레이다를 이용한 차량 충돌 방지 시스템의 신호처리부 설계 및 구현)

  • 정진현;오우진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.163-166
    • /
    • 2001
  • 본 논문에서는 ITS(Intelligent Transportation System) 기술중의 하나인 차량 충돌 방지 시스템의 신호처리부를 설계 구현하였다. 제안된 시스템은 FMCW (Frequency Modulated Continuous Wave)방식의 770Hz 밀리미터파 레이더를 기준으로 파라미터 값을 설계하여 거리와 속도를 실시간 검출하도록 구현되었다. 제안된 시스템은 TI사의 TMS320C31-40 DSP 와 AT89C52 Bbit 마이크로프로세서로 구현되어 10Hz 이상의 갱신율, 0.2m의 거리 분해능 및 2knvh의 속도 분해능을 제공하고 있다. 실험 환경으로 주파수 발생기(Function Generator)에서 비트주파수(Beat Frequency)를 생성하여 동작을 확인하였다.

  • PDF

A Study on the Development of Level Sensor using Frequency Modulated Continuous Wave (주파수 변조 연속파를 이용한 레벨 센서 개발에 관한 연구)

  • 박동국;한태경;박인용;윤천수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.299-303
    • /
    • 2004
  • In this paper, it is presented a level sensor for measuring a level of the contents of cargo tank using frequency modulated continuous wave(FMCW). The frequency range is 10∼11 GHz, the radar cross section(RCS) of target is 0.8 ㎡ of metal plate. the experiment is performed in laboratory and open ground, the sweep time of the signal is 100 ms, the pyramidal horn antenna of about 20 dBi gain is used, and input power of antenna is about 5 dBm. the beat frequency according to the target moving to 40 m is measured. There is a good agreement between measured and calculated results. But the resolution of the FMCW radar is measured about 10 cm due to nonlinear of voltage controlled oscillator(VCO).

  • PDF