• Title/Summary/Keyword: FMCW

Search Result 185, Processing Time 0.025 seconds

Moving Target Detection Algorithm for FMCW Automotive Radar (FMCW 차량용 레이더의 이동타겟 탐지 알고리즘 제안)

  • Hyun, Eu-Gin;Oh, Woo-Jin;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.27-32
    • /
    • 2010
  • 77GHz FMCW(Frequency Modulation Continuous Wave) radar system has been used for automotive active safety systems. In typical automotive radar, the moving target detection and clutter cancellation including stationary targets are very important signal processing algorithms. This paper proposed the moving target detection algorithm which improve the detection probability and reduce the false alarm rate. First, the proposed moving target beat-frequency extraction filter is used in order to suppress clutter, and then the data association is applied by using the extracted moving target beat-frequency. Then, the zero-Doppler target is eliminated to remove the rest of clutter.

Warhead Tracking Filter for FMCW Seekers with Anti-Ballistic Missile Capability (대탄도탄 FMCW 탐색기를 위한 탄두부 추적 필터 설계)

  • Han, Seul-Ki;Ra, Won-Sang;Park, Jin-Bae;Hong, Young-Gon;Park, Sung-Ho;Sun, Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.726-734
    • /
    • 2012
  • In this paper, a practical warhead tracking filter is proposed for developing a FMCW (Frequency Modulation Continuous Wave) seeker with anti-ballistic missile capability. For reliable warhead tracking, the measurement originated from the warhead section of a ballistic target should be separated from other measurements. Futhermore, since the FMCW seeker is based on triangular frequency modulation, the multiple measurements obtained in different chirp periods should be properly associated. As a systematic way to solve the problem, the measurement pairing problem under cluttered environment is reformulated as a data association filtering problem and the PDA (Probabilistic Data Association) scheme is applied. The proposed warhead tracking filter provides better warhead tracking performance compared to the conventional range tracking algorithm and nearest neighbor warhead tracking filter. The effectiveness and reliability of the proposed method are verified using the FMCW seeker simulator.

Design of FMCW radar waveform for flow measurement (유량 측정을 위한 FMCW 레이다 파형 설계)

  • Lee, Changki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • A commercial flow measurement radar sensor estimates a quantity of flowed water using surface flow rate. In this way, the amount of water flowing per unit time cannot be measured accurately because of using an estimation result and it can't response environmental changes. For more accurate flow measurements we need width of waterway, water level and distance that water moved per unit time. Commonly two sensors are used to measure water level and flow rate. In this paper, we propose a method to simultaneously measure the water level and surface flow velocity using a single FMCW radar sensor and design the transmission waveform. In order to verify the waveform design, received signal is modelled based on transmission waveform. In addition, we consider phenomenons and problems that may occur in signal processing.

Algorithm Implementation for Detection and Tracking of Ships Using FMCW Radar (FMCW Radar를 이용한 선박 탐지 및 추적 기법 구현)

  • Hong, Dan-Bee;Yang, Chan-Su
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study focuses on a ship detection and tracking method using Frequency Modulated Continuous Wave (FMCW) radar used for horizontal surveillance. In general, FMCW radar can play an important role in maritime surveillance, because it has many advantages such as low warm-up time, low power consumption, and its all weather performance. In this paper, we introduce an effective method for data and signal processing of ship's detecting and tracking using the X-band radar. Ships information was extracted using an image-based processing method such as the land masking and morphological filtering with a threshold for a cycle data merged from raw data (spoke data). After that, ships was tracked using search-window that is ship's expected rectangle area in the next frame considering expected maximum speed (19 kts) and interval time (5 sec). By using this method, the tracking results for most of the moving object tracking was successful and those results were compared with AIS (Automatic Identification System) for ships position. Therefore, it can be said that the practical application of this detection and tracking method using FMCW radar improve the maritime safety as well as expand the surveillance coverage cost-effectively. Algorithm improvements are required for an enhancement of small ship detection and tracking technique in the future.

Implementation of Voltage Control Dielectric Resonator Oscillator for FMCW Radar (FMCW 레이더용 전압제어 유전체 발진기의 구현)

  • 안용복;박창현;김장구;조현식;강상록;한석균;최병하
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.398-402
    • /
    • 2003
  • In this paper, a VCDRO(Voltage Control Dielectric Resonator Oscillator) applied to FMCW(Frequency Modulated Continuous Wave)Radar as stable source is implemented and constructed with a MESFET for low noise, a dielectric resonator of high frequency selectivity, and high Q varator diode to obtain a good phase noise performance and stable sweep characteristics. The designed circuits is simulated thrash harmonic balance simulation technique to provide the optimum performance. The measured result of a fabricated VCDRO shows that output is 2.22dBm at 12.05GHz, harmonic suppression -30dBc, phase noise -130dBc at 100kHz offset, and sweep range of varator diode $\pm$18.7MHz, respectively. This oscillator will be available to FMCW Radar.

  • PDF

Design and Manufacture of FMCW Radar with Multi-Frequency Bandwidths (다중 대역폭을 갖는 FMCW 레이다 송수신기 설계 및 제작)

  • Hwang, Ji-hwan;Kim, Seung Hee;Kang, Ki-mook;Kim, Duk-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.377-387
    • /
    • 2016
  • Design of X-band frequency FMCW based imaging radar with multi-resolutions and performances of the self-manufactured radar system are presented in this study. In order to implement the multi-bandwidths, a ramp sequence of the FMCW signal is consisting of two kinds of 'saw-tooth' waveform with different bandwidth, and a receiver circuit consisting of L-band source and frequency converter circuit is used to effectively extract spectra of beat-frequency from the received signal of X-band frequency. The system setups for performance measurement of self-manufactured radar system are maximum output power of 35 dBm, sampling frequency of 1.2 MHz and sweep time of 1 ms. Then, the measured resolutions of the modulated signal having bandwidth of 500 MHz and 300 MHz in range & azimuth-direction are (0.28 m, 0.26 m) and (0.44 m, 0.27 m), respectively.

Implementation of Voltage Control Dielectric Resonator Oscillator for FMCW Radar (FMCW 레이더용 전압제어 유전체 발진기의 구현)

  • 안용복;박창현;김장구;최병하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.906-911
    • /
    • 2004
  • In this paper, a VCDRO(Voltage Control Dielectric Resonator Oscillator) applied to FMCW(Frequency Modulated Continuous Wave)Radar as stable source is implemented and constructed with a MESFET(Metal-semiconductor Field-Effect Transistor) for low noise, a dielectric resonate. of high frequency selectivity, and high Q varator diode to obtain a good phase noise performance and stable sweep characteristics. The designed circuits is simulated thrash harmonic balance simulation technique to provide the optimum performance. The measured result of a fabricated VCDRO shows that output is 2.22㏈m at 12.05GHz, harmonic suppression -30㏈c, phase noise -130㏈c at 100KHz offset, and sweep range of varator diode $\pm$18.7MHz, respectively. This oscillator will be available to FMCW Radar.

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.

Low Complexity FMCW Surveillance Radar Algorithm Using Phase Difference of Dual Chirps (듀얼첩간 위상차이를 이용한 저복잡도 FMCW 감시 레이더 알고리즘)

  • Jin, YoungSeok;Hyun, Eugin;Kim, Sangdong;Kim, Bong-seok;Lee, Jonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.71-77
    • /
    • 2017
  • This paper proposes a low complexity frequency modulated continuous wave (FMCW) surveillance radar algorithm. In the conventional surveillance radar systems, the two dimensional (2D) fast Fourier transform (FFT) method is usually employed in order to detect the distance and velocity of the targets. However, in a surveillance radar systems, it is more important to immediately detect the presence or absence of the targets, rather than accurately detecting the distance or speed information of the target. In the proposed algorithm, in order to immediately detect the presence or absence of targets, 1D FFT is performed on the first and M-th bit signals among a total of M beat signals and then a phase change between two FFT outputs is observed. The range of target is estimated only when the phase change occurs. By doing so, the proposed algorithm achieves a significantly lower complexity compared to the conventional surveillance scheme using 2D FFT. In addition, show in order to verify the performance of the proposed algorithm, the simulation and the experiment results are performed using 24GHz FMCW radar module.

Low Complexity Super Resolution Algorithm for FOD FMCW Radar Systems (이물질 탐지용 FMCW 레이더를 위한 저복잡도 초고해상도 알고리즘)

  • Kim, Bong-seok;Kim, Sangdong;Lee, Jonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper proposes a low complexity super resolution algorithm for frequency modulated continuous wave (FMCW) radar systems for foreign object debris (FOD) detection. FOD radar has a requirement to detect foreign object in small units in a large area. However, The fast Fourier transform (FFT) method, which is most widely used in FMCW radar, has a disadvantage in that it can not distinguish between adjacent targets. Super resolution algorithms have a significantly higher resolution compared with the detection algorithm based on FFT. However, in the case of the large number of samples, the computational complexity of the super resolution algorithms is drastically high and thus super resolution algorithms are difficult to apply to real time systems. In order to overcome this disadvantage of super resolution algorithm, first, the proposed algorithm coarsely obtains the frequency of the beat signal by employing FFT. Instead of using all the samples of the beat signal, the number of samples is adjusted according to the frequency of the beat signal. By doing so, the proposed algorithm significantly reduces the computational complexity of multiple signal classifier (MUSIC) algorithm. Simulation results show that the proposed method achieves accurate location even though it has considerably lower complexity than the conventional super resolution algorithms.