• Title/Summary/Keyword: FMCW(Frequency Modulated Continuous Wave)

Search Result 85, Processing Time 0.024 seconds

Low Complexity Super Resolution Algorithm for FOD FMCW Radar Systems (이물질 탐지용 FMCW 레이더를 위한 저복잡도 초고해상도 알고리즘)

  • Kim, Bong-seok;Kim, Sangdong;Lee, Jonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper proposes a low complexity super resolution algorithm for frequency modulated continuous wave (FMCW) radar systems for foreign object debris (FOD) detection. FOD radar has a requirement to detect foreign object in small units in a large area. However, The fast Fourier transform (FFT) method, which is most widely used in FMCW radar, has a disadvantage in that it can not distinguish between adjacent targets. Super resolution algorithms have a significantly higher resolution compared with the detection algorithm based on FFT. However, in the case of the large number of samples, the computational complexity of the super resolution algorithms is drastically high and thus super resolution algorithms are difficult to apply to real time systems. In order to overcome this disadvantage of super resolution algorithm, first, the proposed algorithm coarsely obtains the frequency of the beat signal by employing FFT. Instead of using all the samples of the beat signal, the number of samples is adjusted according to the frequency of the beat signal. By doing so, the proposed algorithm significantly reduces the computational complexity of multiple signal classifier (MUSIC) algorithm. Simulation results show that the proposed method achieves accurate location even though it has considerably lower complexity than the conventional super resolution algorithms.

Ka-Band FMCW Sensor with High Linearity (고선형성을 갖는 Ka대역 FMCW 센서)

  • Kim, Jaehwan;Lee, Sungju;Kwon, Hyukja;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.671-678
    • /
    • 2014
  • This paper presents a Ka-band FMCW sensor that has high linearity by improving a nonlinear behavior of the voltage controlled oscillator. Due to the nonlinear characteristics of the voltage controlled oscillator for the conventional method, the drift of beat frequency can cause inaccuracy and errors to the extracted results. A Ka-band FMCW signal with fast transition time could be generated by using both direct digital synthesizer and phase locked loop in this research. The implemented FMCW sensor showed very high accuracy in beat frequency through the test.

Development of a FMCW Radar Using a Compensation Algorithm for VCO Nonlinearity (VCO 비선형 보상 알고리듬을 적용한 근거리 측정용 FMCW 레이더 개발)

  • Chun, Joong Chang;Lee, Hyun Soo;Sohn, Jong Yoon;Kim, Tae Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • In this paper, we have implemented an FMCW radar for a near distance measurement. In the structure of the FMCW radar, it is a key problem to solve the VCO nonlinearity. In this work, we have adopted a VCO nonlinearity compensation algorithm using the spectrum correlation of beat signals. The radar experimented in this work uses an X-band(9.55~10.25GHz) microwave signal, and realizes precision of 3% in the range of 30m. The prototype can be applied to the front surveillance radar such as in vehicle anti-collision and probing robot mission.

Design of 24-GHz 1Tx 2Rx FMCW Transceiver (24 GHz 1Tx 2Rx FMCW 송수신기 설계)

  • Kim, Tae-Hyun;Kwon, Oh-Yun;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.758-765
    • /
    • 2018
  • This paper presents a 24-GHz frequency-modulated continuous wave(FMCW) radar transceiver with two Rx and one Tx channels in 65-nm complementary metal-oxide-semiconductor(CMOS) process and implemented it on a radar system using the developed transceiver chip. The transceiver chip includes a $14{\times}$ frequency multiplier, low-noise amplifier, down-conversion mixer, and power amplifier(PA). The transmitter achieves >10 dBm output power from 23.8 to 24.36 GHz and the phase noise is -97.3 GHz/Hz at a 1-MHz offset. The receiver achieves 25.2 dB conversion gain and output $P_{1dB}$ of -31.7 dBm. The transceiver consumes 295 mW of power and occupies an area of $1.63{\times}1.6mm^2$. The radar system is fabricated on a low-loss Duroid printed circuit board(PCB) stacked on the low-cost FR4 PCBs. The chip and antenna are placed on the Duroid PCB with interconnects and bias, gain blocks and FMCW signal-generating circuitry are mounted on the FR4 PCB. The transmit antenna is a $4{\times}4$ patch array with 14.76 dBi gain and receiving antennas are two $4{\times}2$ patch antennas with a gain of 11.77 dBi. The operation of the radar is evaluated and confirmed by detecting the range and azimuthal angle of the corner reflectors.

Design of the Transceiver for a Wide-Range FMCW Radar Altimeter Based on an Optical Delay Line (광 지연선 기반의 넓은 고도 범위를 갖는 고정밀 FMCW 전파고도계 송수신기 설계)

  • Choi, Jae-Hyun;Jang, Jong-Hun;Roh, Jin-Eep
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1190-1196
    • /
    • 2014
  • This paper presents the design of a Frequency Modulated Continuous Wave(FMCW) radar altimeter with wide altitude range and low measurement errors. Wide altitude range is achieved by employing the optic delay in the transmitting path to reduce the dynamic range of measuring altitude. Transmitting power and receiver gain are also controlled to have the dynamic range of the received power be reduced. In addition, low measurement errors are obtained by improving the sweep linearity using the Direct Digital Synthesizer(DDS) and minimizing the phase noise employing the reference clock(Ref_CLK) as the offset frequency of the Phase Locked Loop(PLL).

Jamming Detection and Suppression Algorithm for an FMCW Radar Altimeter (FMCW 전파고도계의 재밍 탐지 및 회피 알고리즘)

  • Lee, Jae-Hwan;Jang, Jong-Hun;Roh, Jin-Eep;Yoo, Kyung-Ju;Choi, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2016
  • This paper presents a jamming detection and suppression algorithm of a frequency-modulated continuous-wave(FMCW) radar altimeter. The radar altimeter measures the noise level at the noise measuring period before the transmitting and receiving period and finds the number of sampled noise data over the jamming threshold for detecting the jamming. For a jamming suppression technique, we design the time domain jamming suppression, transmit/receive power control and frequency hopping methods. To assess more realistic operation, the radar altimeter was performed a field test. Through the field test, we verified the algorithms successfully.

Performance evaluation of 80 GHz FMCW Radar for level measurement of cryogenic fluid

  • Mun, J.M.;Lee, J.H.;Lee, S.C.;Sim, K.D.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.56-60
    • /
    • 2021
  • The microwave Radar used for special purposes in the past is being applied in various areas due to the technological advancement and cost reduction, and is particularly applied to autonomous driving in the automobile field. The FMCW (Frequency Modulated Continuous Wave) Radar can acquire level information of liquid in vessel based on the beat frequency obtained by continuously transmitting and receiving signals by modulating the frequency over time. However, for cryogenic fluids with small impedance differences between liquid medium and gas medium, such as liquid nitrogen and liquid hydrogen, it is difficult to apply a typical Radar-based level meter. In this study, we develop an 80 GHz FMCW Radar for level measurement of cryogenic fluids with small impedance differences between media and analyze its characteristics. Here, because of the low intrinsic impedance difference, most of the transmitted signal passes through the liquid nitrogen interface and is reflected at the bottom of the vessel. To solve this problem, a radar measurement algorithm was designed to detect multiple targets and separate the distance signal to the bottom of the vessel in order to estimate the precise position on the liquid nitrogen interface. Thereafter, performance verification experiments were performed according to the liquid nitrogen level using the developed radar level meter.

Ship Monitoring around the Ieodo Ocean Research Station Using FMCW Radar and AIS: November 23-30, 2013

  • Kim, Tae-Ho;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.45-56
    • /
    • 2022
  • The Ieodo Ocean Research Station (IORS) lies between the exclusive economic zone (EEZ) boundaries of Korea, Japan, and China. The geographical positioning of the IORS makes it ideal for monitoring ships in the area. In this study, we introduce ship monitoring results by Automatic Identification System (AIS) and the Broadband 3GTM radar, which has been developed for use in small ships using the Frequency Modulated Continuous Wave (FMCW) technique. AIS and FMCW radar data were collected at IORS from November 23th to 30th, 2013. The acquired FMCW radar data was converted to 2-D binary image format over pre-processing, including the internal and external noise filtering. The ship positions detected by FMCW radar images were passed into a tracking algorithm. We then compared the detection and tracking results from FMCW radar with AIS information and found that they were relatively well matched. Tracking performance is especially good when ships are across from each other. The results also show good monitoring capability for small fishing ships, even those not equipped with AIS or with a dysfunctional AIS.

Design and Implementation of FMCW Radar Based on two-chip for Autonomous Driving Sensor (자율주행센서로서 개발한 2-chip 기반의 FMCW MIMO 레이다 설계 및 구현)

  • Choi, Junhyeok;Park, Shinmyong;Lee, Changhyun;Baek, Seungyeol;Lee, Milim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2022
  • FMCW(Frequency Modulated Continuous Wave) Radar is very useful for vehicle collision warning system and autonomous driving sensor. In this paper, the design and implementation of FMCW radar based on two chip MMIC developed as an autonomous driving sensor was described. Especially, generation of frame-based and chirp-based waveform generation and signal processing are mixed to have the strength of maximum detection speed and compensation of speed. This implemented system was analyzed for performance and commercialization potential through lab. test and driving test in K-city.

Development of FMCW Level Transmitter (마이크로웨이브를 이용한 주파수변조 연속파 레벨트랜스미터의 개발)

  • Choi, Woo-Jin;Ji, Suk-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1711-1712
    • /
    • 2007
  • 액체탱크의 레벨을 정밀측정하는 데 FMCW(Frequency Modulated Continuous Wave)를 이용하고자 한다. 우리는 1GHz 대역폭으로 Sweep하는 Frequency Source Module을 개발하여 테스트 중이다. 개발한 송수신 모듈은 주파수의 송수신을 위한 주요부품들로 구성되는데, VCO(Voltage Controlled Oscillator), 서큘레이터(Circulator), 필터(Filter), 전력분배기(Power Divider), PLL(Phase Locked Loop)제어부, 믹서, 증폭기 등이 그것이다. 이들 부품들이 위치한 RF Board와, 패치로 구성한 안테나를 이용하여 마이크로웨이브 신호를 송수신할 수 있으며, 송수신한 신호 간의 차주파수(beat frequency)성분을 측정하면 거리정보를 획득할 수 있다. 차주파수의 아날로그신호는 DSP를 이용하여 FFT를 수행하여 주파수 성분을 찾아 거리계산을 하도록 개발하였다. 거리 측정의 성능에 영향을 미치는 가장 큰 요소는 안정된 주파수를 만들어 낼 수 있느냐 하는 것이다. 본 논문에서는 제작한 VCO 모듈을 비롯한 개발 중인 각 모듈들을 소개하였다. 향후 VCO의 선형성 개선과, 난반사에 대한 Echo Cancel 알고리듬을 적용하여 제품의 상용화를 목표로 한다.

  • PDF