• 제목/요약/키워드: FLOW VELOCITY

검색결과 7,073건 처리시간 0.034초

대칭 및 비대칭 유동장에서 다회선 초음파 유량계의 유속분포 적분 방법 평가 (Performance Evaluation of the Velocity Profile Integration for the Multi-Path Ultrasonic Flowmeter in Symmetric & Asymmetric Flow Field)

  • 김주영;김경진;박성하
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.370-377
    • /
    • 2002
  • Generally, the system of calculation for the multi-path ultrasonic flow meters can be divided into two methods by how to get the mean velocity, namely, weighting and direct method. Weighting-method derive the mean velocity through modeling in theoretical velocity profile. Direct-method derive the mean velocity though actual flow distribution. The system of calculation varies with maker's transducer configuration and integration method. Each system has merits and demerits. This paper describes the system of integration that calculates line velocity over cross-section of the circular pipe. Flow rate mr discussed in this paper is a difference between theoretical flow rate and integrated flow rate according to values of Reynolds number in symmetric flow field or theoretical flow rate and integrated flow rate according to rotated model in asymmetric flow field.

  • PDF

경추 도수교정이 추골동맥 비대칭군의 혈류속도와 혈류량에 미치는 영향 (Effect of Cervical Manipulation on Blood Velocity and Flow in Subjects with Asymmetric Vertebral Artery)

  • 김한일;김호봉
    • 대한정형도수물리치료학회지
    • /
    • 제19권2호
    • /
    • pp.31-37
    • /
    • 2013
  • Background: The purpose of this study was to identify the effects of cervical manipulation for improve blood velocity and flow in the subjects with asymmetric vertebral artery. Methods: Twenty-four subjects on asymmetric vertebral artery with right side have less blood flow than left side participated in this study for apply to non-specific cervical manipulation on lower portion. Measurement method were using duplex ultrasound with colour doppler imaging for blood velocity and flow on left and right vertebral artery. Results: Compared changes of blood velocity and flow on unilateral after the cervical manipulation, the left blood velocity decreased significantly (p<.01) and the right blood velocity increased significantly (p<.01). The left blood flow no significant changes and the right blood flow increased significantly (p<.01). Compared changes of blood velocity and flow on bilateral, the left and right blood velocity and flow made significantly difference on pre-manipulation (p<.01). However, both side no significantly difference on post-manipulation. Conclusions: These findings suggest that the non-specific cervical manipulation took effect for improve blood velocity and flow in the subjects with asymmetric vertebral artery. Therefore, therapeutic approaches for improve to asymmetric vertebral artery should be consider non-specific cervical manipulation.

  • PDF

엔트로피 개념을 이용한 제주도 상시하천의 평균유속분포 추정 (Mean Velocity Distribution of Natural Stream using Entropy Concept in Jeju)

  • 양세창;양성기;김용석
    • 한국환경과학회지
    • /
    • 제28권6호
    • /
    • pp.535-544
    • /
    • 2019
  • We computed parameters that affect velocity distribution by applying Chiu's two-dimensional velocity distribution equation based on the theory of entropy probability and acoustic doppler current profiler (ADCP) of Jungmun-stream, Akgeun-stream, and Yeonoe-stream among the nine streams in Jeju Province between July 2011 and June 2015. In addition, velocity and flow were calculated using a surface image velocimeter to evaluate the parameters estimated in the velocity observation section of the streams. The mean error rate of flow based on ADCP velocity data was 16.01% with flow calculated using the conventional depth-averaged velocity conversion factor (0.85), 6.02% with flow calculated using the surface velocity and mean velocity regression factor, and 4.58% with flow calculated using Chiu's two-dimensional velocity distribution equation. If surface velocity by a non-contact velocimeter is calculated as mean velocity, the error rate increases for large streams in the inland areas of Korea. Therefore, flow can be calculated precisely by utilizing the velocity distribution equation that accounts for stream flow characteristics and velocity distribution, instead of the conventional depth-averaged conversion factor (0.85).

축류압축기 슈라우드 캐비티내의 누수유동 경로에 대한 연구 (Effects of the Leakage Tangential Velocity on the Leakage Flow Path in Shrouded Axial Compressor Cascades)

  • 손대웅;김동범;송성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.311-317
    • /
    • 2005
  • Measurements of the leakage flow in the shrouded cavity were performed in axial compressor cascades at $Re=2.6{\times}10^5$. This paper describes the effects of the leakage flow tangential velocity on kinematics of the leakage flow in the shrouded cavity and consequent overall loss and exit flow turning at stator blade row downstream. Flow data and flow visualization images consistently indicate that leakage flow circumferentially migrates 2, 4 and 5 blade passages in the direction of rotation for ${\upsilon}_y/c=0.09$, 0.35 and 0.45, respectively where ${\upsilon}_y$ is the leakage tangential velocity and c is the mainstream velocity. The leakage flow contracts to a jet across the seal-tooth resulting in an increase in the leakage axial velocity-doubling the leakage axial velocity in upstream cavity compared to that in the downstream cavity. Consequently, two flow regions are distinguished before and after the seal-tooth. As increasing the leakage tangential velocity, the overall loss downstream of stator blade row decreases and the exit flow turning in the range of span. from the hub endwall to 15% increases while the decreases in the flow turning from 15% to 30% span is observed.

  • PDF

곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동분포에 관한연구 (A Study on the Axial Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct)

  • 손현철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.127-133
    • /
    • 2000
  • In the present study flow characteristics of turbulent pulsating flow in a square-sectional 180。 curved duct are investigated experimentally. in order to measure axial velocity and secondary flow distributions experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet(${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial velocity distributions of turbulent pulsating flow when the ratio of velocity amplitude(A1) is less than one there is hardly any velocity change in the section except near the wall and any change in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the vend angle of $150^{\circ}$ without regard to the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$ without regard to the ratio of velocity amplitude.

  • PDF

곡관덕트에서 난류맥동유동의 축방향 속도분포와 2차유동속도분포 (Axial Direction Velocity and Secondary Flow Distributions of Turbulent Pulsating Flow in a Curved Duct)

  • 손현철;이홍구;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.15-23
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in the square-sectional $180^{\circ}$curved duct are investigated experimentally. In order to measure axial direction velocity and secondary flow distributions, experimental studies for air flow are conducted in the square-sectional $180^{\circ}$curved duct by using the LDV system with the data acquisition and the processing system of the Rotating Machinery Resolver (RMR) and the PHASE software. The experiment is conducted on seven sections form the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) at $30^{\circ}$intervals of the duct. The results obtained from the experimentation are summarized as follows : In the axial direction velocity distributions of turbulent pulsating flow, when the ratio of velocity amplitude (A1) is less than one, there is hardly any velocity change in the section except near the wall and in axial velocity distribution along the phase. The secondary flow of turbulent pulsating flow has a positive value at the bend angle of $150^{\circ}$regardless of the ratio of velocity amplitude. The dimensionless value of secondary flow becomes gradually weak and approaches zero in the region of bend angle $180^{\circ}$without regard to the ratio of velocity amplitude.

  • PDF

매끈한 관내 공기유동에서 유량과 속도분포에 관한 실험적 연구 (An Experimental Study on the Flow-rate and Velocity Profile of Air Flow in the Smooth Pipe)

  • 박상언
    • 한국유체기계학회 논문집
    • /
    • 제5권4호
    • /
    • pp.54-60
    • /
    • 2002
  • Experimental study was conducted to obtain the air velocity profiles in turbulent pipe flow. The acrylic smooth pipe (${\phi}=80mm$) was used for the test section of the flow loop. It was known that the velocity profiles of turbulent flow were different with Reynolds numbers and the viscous sublayer was usually quite thin. The following conclusions were drawn from the experimental investigations. Maximum velocity of the pipe center and flow-rate are useful for the duct design on the spot. The velocity profiles of high Reynolds number was flatter than those of low Reynolds number. It was known that the exponent, n, for power-law velocity profiles was $6{\sim}9$ depending on Reynolds number ranging from $10^4$ to $10^5$ in the turbulent flow, However, in this experiment study, it was $9{\sim}14$ depending on Reynolds number ranging from 17,000 to 123,727 in the turbulent flow, and $1.7{\sim}3.5$ depending on Reynolds number ranging from 2,442 to 4,564 in the transition region.

직접파를 이용한 배경매질 유속정보 도출과 유속을 고려한 파형역산의 적용 (Extraction of Flow Velocity Information using Direct Wave and Application of Waveform Inversion Considering Flow Velocity)

  • 이다운;정우근;신성렬;배호석
    • 지구물리와물리탐사
    • /
    • 제20권4호
    • /
    • pp.199-206
    • /
    • 2017
  • 해상탐사에서 얻어지는 현장자료는 바람, 파도, 조류, 배경매질의 유속 등 다양한 환경요소에 영향을 받는다. 배경매질의 유속을 제외한 대부분의 환경요소는 자료처리 단계에서 적절한 보정이 이루어지고 있다. 본 연구에서는 배경매질의 유속정보가 파형역산에 미치는 영향을 분석하기 위해 배경매질의 유속정보를 고려하는 파동 방정식 모델링을 활용하여 관측자료를 생성하고, 생성된 자료를 통해 수치 실험을 진행하였다. 수치예제에는 다소 비현실적인 유속이 적용된 결과도 포함되어 있다. 이와 더불어, 탐사자료의 유속정보를 수치적 기법으로 도출하여 역산을 수행하는 알고리즘을 제안하였다. 제안된 알고리즘은 수정된 Marmousi2 모델에 적용하여 유속에 따른 결과를 얻고자 하였다. 기존의 유속을 고려하지 않은 역산 결과와 제안된 알고리즘으로 수행한 역산 결과 비교를 통해 유속의 세기가 갱신되는 물성정보에 미치는 영향을 확인하였다.

Mechanism analysis on fluidelastic instability of tube bundles in considering of cross-flow effects

  • Lai, Jiang;Sun, Lei;Gao, Lixia;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.310-316
    • /
    • 2019
  • Fluidelastic instability is a key issue in steam generator tube bundles subjected in cross-flow. With a low flow velocity, a large amplitude vibration of the tube observed by many researchers. However, the mechanism of this vibration is seldom analyzed. In this paper, the mechanism of cross-flow effects on fluidelastic instability of tube bundles was investigated. Analysis reveals that when the system reaches the critical state, there would be two forms, with two critical velocities, and thus two expressions for the critical velocities were obtained. Fluidelastic instability experiment and numerical analysis were conducted to obtain the critical velocity. And, if system damping is small, with increases of the flow velocity, the stability behavior of tube array changes. At a certain flow velocity, the stability of tube array reaches the first critical state, a dynamic bifurcation occurs. The tube array returns to a stable state with continues to increase the flow velocity. At another certain flow velocity, the stability of tube array reaches the second critical state, another dynamic bifurcation occurs. However, if system damping is big, there is only one critical state with increases the flow velocity. Compared the results of experiments to numerical analysis, it shows a good agreement.

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF